读书笔记:深入理解计算机系统 第二章

本文详细解析了整数运算中的进位、截断规则,以及如何通过补码进行加法、乘法溢出判断。同时,介绍了位操作函数在整数运算中的应用,并提供了整数溢出检测的实用函数实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1)      a^a= 0

void inplace_swap(int *x,int *y)
{
	*x = *x ^ *y;
	*y = *x ^ *y;
	*x = *x ^ *y;
}

2)  bis:位设置   bic:位清除

int bool_or(int x,int y)
{
	int result = bis(x,y);
	return result;
}

int bool_xor(int x,int y)
{
	int result = bis(bic(x,y),bic(x,y));
	return result;
}

3) 计算机在运算时(加减乘除等)根本不区分有符号数与无符号数,仅仅按照如下简单的计算规则如下

      (1)    进位(加权和表示法)    (2)    截断(模加法)

8)补码加法溢出判断

#include <limits.h>
//当正溢出时,saturating_add返回TMax,负溢出时,返回TMin。
int saturating_add(int x, int y)
{
	int sum= x + y;
	int neg_over= x < 0 && y < 0 && sum >= 0;          //出现负溢出
	int pos_over= x > 0 && y > 0 && sum < 0;           //出现正溢出
	if(neg_over) return INT_MAX;
	if(pos_over) return INT_MIN;
	return sum;
}

9) 补码乘法溢出判断

溢出返回假

int tmult_ok(int x , int  y)
{
	int p = x*y;
	return !x || p/x == y;
}

10) 补码求非:k左边所有位取反,k为最右边的1.例如1100--->0100

       整数乘除运算转换为移位和加法运算.


Lab1 

// Returns a count of the number of 1's in the argument.
// Examples: bitCount(5) = 2, bitCount(7) = 3
// Legal ops: ! ~ & ^ | + << >>

int bitCount(int x) 
{
  int m1 = 0x11 | (0x11 << 8);
  int mask = m1 | (m1 << 16);
  int s = x & mask;
  s += x>>1 & mask;
  s += x>>2 & mask;
  s += x>>3 & mask;

  s = s + (s >> 16);
  
  mask = 0xF | (0xF << 8);
  s = (s & mask) + ((s >> 4) & mask);
  return (s + (s>>8)) & 0x3F;
}


参考:

IEEE754详解 http://ishare.iask.sina.com.cn/f/22962650.html

整数溢出

标志寄存器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值