Python 函数和内存分析

本文详细探讨了Python函数的各个方面,包括函数的分类、定义与调用、形参和实参、返回值、作用域、参数传递、变量的局部与全局、内存分析、浅拷贝与深拷贝、lambda表达式、递归函数和嵌套函数。内容涵盖了从基本概念到高级特性,如使用`nonlocal`和`global`关键字,以及LEGB规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

067.函数的基本概念_内存分析_函数的分类_定义和调用

     a.内置函数,标准库函数,第三方函数,用户自定义函数;

     b.函数的定义和调用:

         def 函数名([参数列表]):

                           函数体/若干语句

def fun():
    print("***")
    print("aaa")

fun()

要点:写法的细节;参数列表;return 返回值;使用函数前得先定义函数(与C中类似)


068.形参和实参_文档字符串_函数注释

a.形参和实参:

   

def fun(a,b):
    m=a+b
    print(m)
fun(2,3)
fun(4,5)
def fun1(a,b):
    return  a+b
m1=fun1(1,2)
print(m1)

b.文档字符串: 注释;

def fun(a,b):
    '''lalallalal'''
    m=a+b
    print(m)
fun(2,3)
fun(4,5)

help(fun.__doc__)


069.返回值详解

a.要点:如果函数体中包含return 语句,则结束函数执行并返回;如果函数体中不包含return语句,则返回None值;要返回多个返回值,使用列表、元组、字典、集合将多个值“存起来”即可。

def add(a,b):
    print("计算两个数的和")
    return  a+b
    print(3)#return已经结束语句 这句话不会被打印出来

c=add(1,2)
print(c*20)

def dd():
    print(c)

m=dd()
print(m) #返回空

#返回多个返回值

def vv(a,b,c):
    return (a*2,b*3,c*4)

last=vv(1,2,3)
print(last)

#<注>与下面的子函数进行对比,发现,return返回用括号则返回元组,如果是[]则为列表


def vv(a,b,c):
    return [a*2,b*3,c*4]

last=vv(1,2,3)
print(last)

def vv(a,b,c):
    return {a*2,b*3,c*4}

last=vv(1,2,3)
print(last)


070.函数也是对象_内存分析

#测试函数也是对象

def test01():
    print("lall")

test01() #在python里,小括号是调用的意思
c=test01 #tset01的值赋给c,c调用的和test01一样
c()

print(id(test01))
print(id(c))


071.变量的作用域_全局变量_局部变量_栈帧内存分析讲解

a.全局变量和局部变量的作用域和C里一样

b.全局变量:降低了函数的通用性和可读性,应尽量避免全局变量的使用

                     全局变量一般做常量使用‘

                    <新知识>函数内要改变全局变量,使用globa声明

c.局部变量:局部变量的引用比全局变量快,优先考虑使用

                    如果局部变量和全局变量同名,则在函数内隐藏全局变量,只使用局部变量

自我小结:在函数里面如果使用同名的全局变量,在函数体里优先输出局部变量,在一个新的函数里再次调用,但是新函数里面没有与全局变量同名,并改变其值,输出仍为全局变量。如果想在函数内改变全局变量,需用global,如果第一个子函数改变了全局变量的值,第二个子函数输出的全局变量值为新值

i=3

def f():
    m=3
   # global i
  #  print(i)
    print(m)
    i = 200
    print(i)

f()
print(locals())#打印输出局部变量
print(globals())#打印输出全局变量

def g():
    #global i
    print(i)
    #print(m) #m为局部变量

g()


072.局部变量和全局变量_效率测试

import math
import time
def test01():
    start = time.time()
    for i in range(1,100000):
        math.sqrt(30)
    end = time.time()
    print("耗时:{0}".format((end-start)))

def test02():
    start = time.time()
    b=math.sqrt
    for i in range(1, 100000):
        b(30)
    end = time.time()
    print("耗时:{0}".format((end - start)))

test01()
test02()


073.参数的传递_传递可变对象_内存分析

a.python中参数 的传递都是“引用传递”,不是“值传递”

b.可变对象:字典、列表、集合、自定义对象等

   

b=[10,20]
print(id(b))
def te(m):
    print("m",id(m))
    m.append(30)
    print("m",id(m))

te(b)
print(b)

 

c.数字(int、 floa)、字符串、元组、function等

 

 

074.参数的传递_传递不可变对象_内存分析

    传递参数是不可变对象时,实际传递的还是对象的引用,在“赋值操作”时,由于不可变对象无法修改,系统会创建一个新的对象

a=100
print("a",id(a))
def t(n):
    print("n",id(n))
    n=n+200#因为不可变对象不可修改,所以创建了一个新的对象
    print("n",id(n))
    print(n)
t(a)
print("a",id(a))


075.浅拷贝和深拷贝_内存分析

     a.使用内置函数:copy(浅拷贝),deepcopy(深拷贝)

     b.浅拷贝:不拷贝子对象的内容,只拷贝子对象的引用

        深拷贝:会连子对象的内存也全部拷贝一份,对子对象的修改不会影响源拷贝

import copy
def t1():
    print("拷贝前:")
    a = [10, 20, [5, 6]]
    b = copy.copy(a)
    print("a:", a)
    print("b:", b)
    b.append(30)
    b[2].append(7)
    print("浅拷贝:")
    print("a:", a)
    print("b:", b)


def t2():
    print("拷贝前:")
    a = [10, 20, [5, 6]]
    b = copy.deepcopy(a)
    print("a:", a)
    print("b:", b)
    b.append(30)
    b[2].append(7)
    print("深拷贝:")
    print("a:", a)
    print("b:", b)

t1()
print("----------------------")
t2()


                             


076.参数的传递_不可变对象含可变子对象_内存分析

《注》:传递不可变对象时,如果是发生拷贝,用的是浅拷贝

a=10
print("a",id(a))
def test01(m):
    print("m:",id(m))
    m=20
    print(m)
    print("m:", id(m))

test01(a)
print("----------------- \n")
#列表可变
b=[10,20,[5,6]]
print("b:",id(b))

def test02(m):
    print("m:", id(m))
    m[2] = 222
    print(m)
    print("m:", id(m))
test02(b)
#元组不可变 下面程序将会报错
v=(10,20,[5,6])
print("v:",id(v))

def test03(m):
    print("m:", id(m))
    #m[2] = 222 此句不可执行
    m[2].append(888)
    print("m:",m)
    m[2][0]=2
    print("m:", m)
    print("m:", id(m))

test03(v)
print("v:",v)


077.参数的类型_位置参数_默认值参数_命名参数

a.位置参数:需要个数和形参匹配

b.默认值参数:在定义形参的时候,直接给形参值;并且默认值参数要放在位置参数的后面;如果传到默认值参数,则改变默认值参数的值

c.命名参数:可以按照形参的名称传递参数

   

def f(a,b,c=1):
    print(a+b+c)

f(1,2)
f(1,4,5)

def g(a,b,c):
    print(a+c)

g(a=2,b=1,c=7)


078.参数的类型_可变参数_强制命名参数

a.可变参数:*param(一个星号),将多个参数收集到一个“元组”对象中

                     **param(两个星号),将多个参数收集到一个“字典”对象中

def f1(a,b,*c):
    print(a,b,c)

f1(1,2,3,4)

def f2(a,b,**c):
    print(a,b,c)

f2(1,2,name="lal",age=13)

def f3(a,b,*c,**d):
    print(a,b,c,d)

f3(1,2,5,66,name="rr",age="17")

b.强制命名参数:在带星号的“可变参数”后面增加新的参数,必须是“强制命名参数”

def f1(*a,b,c):
    print(a,b,c)

f1(1,2,b=2,c=3)


079.lambda表达式和匿名函数

a.lambda表达式用来声明匿名函数;只允许包含一个表达式;该表达式的计算结果就是函数的返回值

f=lambda a,b,c:a+b+c
print(f)
print(f(2,3,4))

g=[lambda  a,d:a*2+d,lambda b:b*3,lambda c:c*4]
print(g[0](6,1),g[1](7),g[2](8))


080.eval()函数用法

功能:将字符串str当成有效的表达式求值并返回计算结果

s="print('abdg')"
eval(s)

a=10
b=20
c=eval("a+b")
print(c)

dict1=dict(a=100,b=200)
d=eval("a+b")
print(d)
d=eval("a+b",dict1)
print(d)


081.递归函数_函数调用内存分析_栈帧的创建

a.终结条件;递归步骤


def f1(n):
    print(n)
    if(n==0):
        print("over")
    else:
        f1(n-1)
    print("##",n)

def f2():
    print("2")
f1(4)


082.递归函数_阶乘计算案例

def f1(n):
    if(n==1):
        return 1
    else:
        return n*f1(n-1)

print(f1(5))

#可以通过递归做分析几何,


083.嵌套函数_内部函数_数据隐藏

嵌套函数:将细节隐藏,分装、隐藏、降低重复代码、闭包

def f1():
    print(1)
    def f2():
        print(2)
    f2()

f1()


084.nonlocal_global

nonlocal:用来声明外层的局部变量

def f1():
    i=2
    print(i)
    def f2():
        nonlocal i
        i=5
        print(i)
    f2()

f1()


085.LEGB规则

查找规则:local(函数或者类的方法内部)->enclosed(嵌套函数)->global(模块中的全局变量)->built in(Python为自己保留的特殊名称)

如果在所有命名空间都没有找到则返回NameError()

str ="global"
def f1():
    #str="outer"
    def f2():
       # str="inner"
        print(str)
    f2()

f1()


 

### Python 函数内存管理关系 Python函数执行期间涉及动态内存分配释放操作。当函数被调用时,局部变量会在栈上创建并初始化,在函数返回后这些局部变量会被销毁。然而,如果存在闭包或其他形式的对象引用,则可能导致对象无法及时回收,进而引发潜在的内存泄漏。 #### 使用 `memray` 进行底层 C/C++ 函数内存分析 对于需要深入了解 Python 底层实现细节的应用场景,可以采用 `memray` 来追踪由 Python 代码触发但实际发生在 C 或者 C++ 层面的内存分配行为: ```bash python3 -m memray run --native script.py ``` 这条命令能够展示程序运行过程中各个阶段所消耗的实际物理内存量,并通过火焰图等形式直观呈现出来[^1]。 #### 利用 `memory_profiler` 记录每行代码内存变化 另一个常用的库叫做 `memory_profiler` ,它允许开发者逐行查看 Python 程序中的内存使用状况。安装此工具之后可以在脚本顶部加上装饰器来启用功能,随后产生的日志文件将会详尽描述各处发生的内存变动情况: ```python from memory_profiler import profile @profile def my_func(): a = [1] * (10 ** 6) b = [2] * (2 * 10 ** 7) del b return a ``` 上述例子展示了如何标记特定方法以便后续审查其内部逻辑对资源的影响程度[^2]。 #### 借助 Pympler 实现全面的对象级诊断 除了以上两种方式外,还有专门针对 Python 数据结构特性的解决方案——Pympler 。该套件提供了多种手段帮助理解复杂应用内的对象分布及其相互作用模式: - **asizeof**: 获取单个实例的确切尺寸; - **Muppy**: 动态监视整个进程空间的变化趋势; - **ClassTracker**: 长时间跟踪选定类别的生命周期事件。 下面是一个简单的示例说明怎样利用 Muppy 组件获取当前存活对象的信息概览: ```python import gc from pympler import muppy, summary all_objects = muppy.get_objects() summarized_data = summary.summarize(all_objects) for line in summarized_data[:5]: print(line) ``` 这段代码片段会打印出前五条最占空间的数据项摘要信息[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值