【通信原理笔记】【二】随机信号分析——2.2 平稳随机过程


前言

我们学习了随机信号以及随机信号的相关函数与功率谱的计算方法,但是这种计算还是十分复杂的。比如仅仅是求期望函数,就需要抽样很多样本去求均值。因此,我们有必要找到随机过程的一些关键性质,使得我们在分析这种具备特殊性质的随机信号时,能够更加方便快捷。这就是这篇将要介绍的平稳随机过程。


一、平稳随机过程

1.1 广义平稳过程

在本系列笔记中仅讨论广义平稳过程,也叫宽平稳过程。这种平稳过程条件更加宽松,即随机过程 X ( t ) X(t) X(t)的均值与时间无关,自相关函数只与时间差有关:

E ( X ( t ) ) = m X E(X(t))=m_X E(X(t))=mX
R X ( t , t + τ ) = E ( X ( t ) X ( t + τ ) = R X ( τ ) R_X(t,t+\tau)=E(X(t)X(t+\tau)=R_X(\tau) RX(t,t+τ)=E(X(t)X(t+τ)=RX(τ)

从这个定义就可以理解到所谓“平稳”的含义,其实就是随机过程的期望不会随着时间的改变而变化,其自相关函数对应的功率谱能量谱也不会因为时间改变而变化,始终处于一种稳定的状态。

1.2 遍历性

有了平稳过程,我们就不用对每个时刻都去计算他们的均值和相关函数了。但是考虑怎么去求这个期望 m X m_X mX,我们还是需要采样足够多的样本函数,这是十分麻烦的。我们知道随机过程的每个时刻的取值,都相当于一个随机变量。

如果说任意一个样本函数都能经历所有的随机变量取值,那我们是不是就不需要抽样那么多的样本函数,而是在一个样本函数上从时间轴去采样,就能采到所有不同的随机变量取值,也就能计算数学期望了?这种性质,就叫做遍历性。注意!我们讨论这种性质是基于平稳过程的前提,也就是这个性质只是用于描述一种更为特殊的平稳过程。

为了加深理解,这里给出一个例子,考虑一个平稳过程 X ( n ) X(n) X(n) n n n取值为正整数。该随机过程表示的是每次等概地从两个质地均匀的骰子里取出一个进行投掷( x 1 ( n ) x_1(n) x1(n) x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值