文章目录
前言
上一篇中我们介绍了向量空间的概念,并且学习了对任意给出的一组向量,如果构造一个向量空间。本文将更加细致的去分析张成一个向量空间,具有哪些性质。并且简要讨论向量空间的基。
一、极大线性无关组
首先,我们再研究一下由向量组构造出向量空间的过程。也就是对该向量组做任意系数的线性组合。说到线性组合,我们就会想到之前学过的一个概念——线性相关。
若一组向量 x 1 , x 2 , . . . x n \bm{x}_1,\bm{x}_2,...\bm{x}_n x1,x2,...xn线性相关,则存在一组不全为0的系数,使得 a 1 x 1 + a 2 x 2 + … + a n x n = 0 a_1\bm{x}_1+a_2\bm{x}_2+\ldots+a_n\bm{x}_n=0 a1x1+a