【实分析】【二】2.3 乘法及其性质


前言

前面我们已经定义了自然数,建立了自然数的基本运算——增长运算。然后又基于增长运算,递归地定义了加法运算。现在,我们继续重复这种方式,递归地定义乘法运算


一、乘法定义

我们已经知道了,加法就是递归重复地进行增长运算,让一个数m加上数n,就是对n重复m次增长运算。乘法的定义也是类似,即重复地进行加法运算,其具体定义如下:

设m是自然数,为把0乘到m上,定义 0 × m : = 0 0\times m:=0 0×m:=0。设已经定义好了如何把n乘到m上,那么我们归纳地有 ( n + + ) × m : = n × m + m (n++)\times m := n\times m+m (n++)×m:=n×m+m

为了免去括号,我们约定先乘法后加法的运算顺序,并且将 m × n m\times n m×n 简写为 m n mn mn 。可以看到,相比加法运算,乘法运算的效率又一次提高了。我们先证明一下,乘法运算是个对自然数封闭的运算:

证明:对n进行归纳,证明自然数的乘法运算结果 n m 仍然是自然数 nm仍然是自然数 nm仍然是自然数
P ( 0 ) : 0 × m = 0 P(0): 0\times m = 0 P(0):0×m=0 为真
P ( n ) P(n) P(n) 为真: n × m n\times m n×m 为自然数
P ( n + + ) : ( n + + ) × m = n × m + m P(n++): (n++)\times m=n\times m+m P(n++):(n++)×m=n×m+m
∵ n × m , m \because n\times m, m n×m,m 均为自然数
由加法封闭性可知 n × m + m n\times m+m n×m+m 为自然数,因此 P ( n + + ) P(n++) P(n++) 为真。

下面我们来看看乘法运算具有哪些性质。

二、乘法交换律

乘法具有交换律:设m和n是自然数,则有 m × n = n × m m\times n=n\times m m×n=n×m。证明乘法交换律与加法交换律一样,通过归纳法求证。然而 0 × n = n × 0 0\times n=n\times0 0×n=n×0 并不是可以直接证到的,所以我们先归纳证明这个起始条件。

证明:对n进行归纳,证明 0 × n = n × 0 0\times n=n\times0 0×n=n×0
P ( 0 ) : 0 × 0 = 0 × 0 = 0 P(0): 0\times 0 = 0\times 0 =0 P(0):0×0=0×0=0 为真
P ( n ) P(n) P(n) 为真: 0 × n = n × 0 = 0 0\times n =n \times 0=0 0×n=n×0=0
P ( n + + ) P(n++) P(n++): 左边 = 0 × ( n + + ) = 0 ( 乘法定义 ) =0\times (n++)=0 (乘法定义) =0×(n++)=0(乘法定义)
右边 ( n + + ) × 0 = n × 0 + 0 = 0 × n + 0 = 0 (n++)\times 0=n\times 0+0=0\times n+0=0 (n++)×0=n×0+0=0×n+0=0
因此 P ( n + + ) P(n++) P(n++) 为真

现在,我们对原交换律进行归纳:

证明:对m进行归纳,证明 m × n = n × m m\times n=n\times m m×n=n×m
P ( 0 ) : 0 × n = n × 0 P(0): 0\times n = n\times 0 P(0):0×n=n×0 上述已证为真
P ( m ) P(m) P(m) 为真: m × n = n × m m\times n =n \times m m×n=n×m
P ( m + + ) P(m++) P(m++): 左边 $=(m++)\times n=mn+n $
右边 = n × ( m + + ) =n\times (m++) =n×(m++)
   ⟺    n × ( m + + ) = m n + n \iff n\times (m++)=mn+n n×(m++)=mn+n
   ⟺    n × ( m + + ) = n m + n \iff n\times (m++)=nm+n n×(m++)=nm+n

这里遇到了加法交换律证明中一样的问题,即我们的乘法定义中只定义了把m++乘到n上,但是并没有定义了把n乘到m++上。所以我们还是需要再对此进行归纳证明:

证明:对n进行归纳,证明 n × ( m + + ) = n m + n n\times (m++)=nm+n n×(m++)=nm+n
P ( 0 ) : 0 × ( m + + ) = 0 = 0 × m + 0 P(0): 0\times (m++) = 0=0\times m+0 P(0):0×(m++)=0=0×m+0 为真
P ( n ) P(n) P(n) 为真: n × ( m + + ) = n m + n n\times (m++) =nm+n n×(m++)=nm+n
P ( n + + ) P(n++) P(n++): 左边 = ( n + + ) × ( m + + ) = n × ( m + + ) + m + + =(n++)\times (m++)=n\times (m++)+m++ =(n++)×(m++)=n×(m++)+m++
= n m + n + m + + =nm+n+m++ =nm+n+m++
右边 = ( n + + ) × m + n + + = n m + m + n + + = n m + n + 1 + m = n m + n + m + + =(n++)\times m+n++=nm+m+n++=nm+n+1+m=nm+n+m++ =(n++)×m+n++=nm+m+n++=nm+n+1+m=nm+n+m++
因此, P ( n + + ) P(n++) P(n++) 为真

由此,我们就得到了乘法交换律的证明。有了加法相关性质推导证明的经验,我们可以乘胜追击,把乘法的其他性质规律也一并证掉。

三、乘法的其他性质

3.1 正自然数的乘法

命题:设n,m是自然数,则有 n m = 0 nm=0 nm=0 当且仅当其中至少一个为零。特别地,若m和n均为正,则nm也为正。

证明:用反证法,假设存在自然数m, n均不为零,且 n m = 0 nm=0 nm=0
因为m,n均为正,则存在自然数x,y, 满足 m = x + + , n = y + + m=x++, n=y++ m=x++,n=y++
∴ ( y + + ) ( x + + ) = y ( x + + ) + x + + = y x + y + x + + = 0 \therefore (y++)(x++)=y(x++)+x++=yx+y+x++=0 (y++)(x++)=y(x++)+x++=yx+y+x++=0
因为 y x + y yx+y yx+y 为自然数, x + + x++ x++ 为正,所以 x + y + x + + x+y+x++ x+y+x++ 为正,矛盾!所以m,n不均为正。即m、n中至少一个为0。

证明过程中用到了加法的一些性质。

3.2 分配律

设a,b,c为自然数,则有 a ( b + c ) = a b + a c a(b+c)=ab+ac a(b+c)=ab+ac 以及 ( b + c ) a = b a + c a (b+c)a=ba+ca (b+c)a=ba+ca。由乘法具有交换律,我们只需要证明其中一个等式成立即可。我们来证一下第一个:

证明:对a进行归纳:
P ( 0 ) : 0 × ( b + c ) = 0 = 0 × b + 0 × c = 0 + 0 = 0 P(0): 0\times (b+c) = 0=0\times b+0\times c=0+0=0 P(0):0×(b+c)=0=0×b+0×c=0+0=0 为真
P ( a ) P(a) P(a) 为真: a ( b + c ) = a b + a c a(b+c) =ab+ac a(b+c)=ab+ac
P ( a + + ) P(a++) P(a++): 左边 = ( a + + ) × ( b + c ) = a ( b + c ) + b + c = a b + a c + b + c =(a++)\times (b+c)=a(b+c)+b+c=ab+ac+b+c =(a++)×(b+c)=a(b+c)+b+c=ab+ac+b+c
右边 = ( a + + ) b + ( a + + ) c = a b + b + a c + c = a b + a c + b + c =(a++)b+(a++)c=ab+b+ac+c=ab+ac+b+c =(a++)b+(a++)c=ab+b+ac+c=ab+ac+b+c = 左边
因此, P ( a + + ) P(a++) P(a++) 为真。

3.3 乘法结合律

乘法是结合的:设a,b,c为自然数,则有 ( a b ) c = a ( b c ) (ab)c=a(bc) (ab)c=a(bc)

证明:对a进行归纳:
P ( 0 ) : ( 0 × b ) c = 0 × c = 0 = 0 × ( b c ) = 0 P(0): (0\times b)c = 0\times c=0=0\times (bc)=0 P(0):(0×b)c=0×c=0=0×(bc)=0 为真
P ( a ) P(a) P(a) 为真: ( a b ) c = a ( b c ) (ab)c =a(bc) (ab)c=a(bc)
P ( a + + ) P(a++) P(a++): 左边 = ( ( a + + ) × b ) c = ( a b + b ) c =((a++)\times b)c=(ab+b)c =((a++)×b)c=(ab+b)c
由分配律有: ( a b + b ) c = ( a b ) c + b c (ab+b)c=(ab)c+bc (ab+b)c=(ab)c+bc
右边 = ( a + + ) ( b c ) = a ( b c ) + b c =(a++)(bc)=a(bc)+bc =(a++)(bc)=a(bc)+bc
KaTeX parse error: Undefined control sequence: \becasue at position 1: \̲b̲e̲c̲a̲s̲u̲e̲ ̲(ab)c=a(bc)
∴ \therefore 左边=右边,因此, P ( a + + ) P(a++) P(a++) 为真。

证明过程中,注意不要漏掉括号,导致没有用上 P ( a ) P(a) P(a) 为真的条件而造成伪证。

3.4 乘法保序

设a、b是自然数,若 a < b a<b a<b c > 0 c>0 c>0,则有 a c < b c ac<bc ac<bc

证明: ∵ a < b \because a<b a<b
∴ ∃ x > 0 , a + x = b \therefore \exist x>0, a+x=b x>0,a+x=b
∴ b c = ( a + x ) c = a c + x c \therefore bc=(a+x)c=ac+xc bc=(a+x)c=ac+xc
∵ x > 0 , c > 0 \because x>0,c>0 x>0,c>0
∴ x c > 0 , b c = a c + x c > a c \therefore xc>0,bc=ac+xc>ac xc>0,bc=ac+xc>ac

3.5 消去律

设a、b、c是自然数,满足 a c = b c ac=bc ac=bc c ≠ 0 c\neq0 c=0,则有 a = b a=b a=b

证明:用反证法,假设 a ≠ b a\neq b a=b
由序的三歧性,可知 a < b a<b a<b 或者 a > b a>b a>b 必有一个成立。
不妨设 a < b a<b a<b 成立。
∴ ∃ x > 0 , b = a + x \therefore \exist x>0, b=a+x x>0,b=a+x
a c = b c = ( a + x ) c = a c + x c ac=bc=(a+x)c=ac+xc ac=bc=(a+x)c=ac+xc
∵ x > 0 , c > 0 \because x>0,c>0 x>0,c>0
∴ x c > 0 , b c = a c + x c > a c \therefore xc>0,bc=ac+xc>ac xc>0,bc=ac+xc>ac,矛盾!
因此, a = b a=b a=b

四、欧几里得算法及指数运算

4.1 欧几里得算法

接触过一点数论的朋友,应该很熟悉欧几里得算法,即把一个自然数n分解成 m q + r mq+r mq+r的形式。任意一个自然数均可以找到自然数 m , r m,r m,r 作这样的分解,其中 q > 0 , 0 ≤ r < q q>0,0\le r<q q>0,0r<q,m、r均为自然数。我们来证明一下这件事:

证明:对自然数n进行归纳:
$P(0): 取 m = r = 0 m=r=0 m=r=0, q q q 取任意正数,有 0 = 0 × q + 0 = 0 + 0 = 0 0= 0\times q+0=0+0=0 0=0×q+0=0+0=0 为真。
P ( n ) P(n) P(n) 为真: n = m q + r n =mq+r n=mq+r
P ( n + + ) : n + + = m q + r + + P(n++): n++=mq+r++ P(n++):n++=mq+r++
∵ 0 ≤ r < q \because 0\le r<q 0r<q
∴ r + + ≤ q \therefore r++\le q r++q
r + + = q r++=q r++=q,则有 n + + = m q + q = ( m + + ) q + 0 n++=mq+q=(m++)q+0 n++=mq+q=(m++)q+0,取 m ′ = m + + , r ′ = 0 m'=m++,r'=0 m=m++,r=0 即可。
r + + < q r++<q r++<q,则直接取 m ′ = m , r ′ = r + + m'=m,r'=r++ m=m,r=r++即可。

这个分解过程,其实就是我们从小所熟知的带余除法。

4.2 指数运算

类似的,我们可以递归地定义指数运算为乘法运算的重复:设m是自然数,为把m升到0此幂,我们定义 m 0 : = 1 m^0:=1 m0:=1,设已经定义好 m n m^n mn,那么归纳的定义有 m ( n + + ) : = m n × m m^(n++):=m^n\times m m(n++):=mn×m

根据《陶哲轩实分析》中的安排,在定义了整数与比例数(有理数)之后,再讨论指数运算。


附录

习题部分除了2.3.4外,全都是之前的命题与性质规律的证明,因此这里只补上该题的证明供参考。

习题2.3.4:证明等式 ( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^2=a^2+2ab+b^2 (a+b)2=a2+2ab+b2
证明: ( a + b ) 2 = ( a + b ) ( a + b ) = a ( a + b ) + b ( a + b ) (a+b)^2=(a+b)(a+b)=a(a+b)+b(a+b) (a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)
= a 2 + a b + b a + b 2 = a 2 + 1 × a b + a b + b 2 = a 2 + ( 1 + + ) a b + b 2 = a 2 + 2 a b + b 2 =a^2+ab+ba+b^2=a^2+1\times ab+ab+b^2=a^2+(1++)ab+b^2=a^2+2ab+b^2 =a2+ab+ba+b2=a2+1×ab+ab+b2=a2+(1++)ab+b2=a2+2ab+b2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值