我们都知道一次筛法求1-n之间的素数,这个筛法的算法复杂度为O(N),但题目中的U,L最大值可为整型上限,用纯粹的暴力筛法肯定要超时?怎么办,用二次筛法。U和L之间的合数,质因子不超过O(L^0.5),于是用筛法选出50000内的素数即可,因为50000的平方大于整形上线了。再用这些素数去筛出U-L之间的合数,剩下的就是U-L之间的素数了,边筛边计算两个素数之间的差,就OK了。另外,尤其小心的是U为1的情况,做素数题往往1是个坑爹的东西。。。附代码:
#include <iostream>
#include <cmath>
using namespace std;
const int N=50000;
const int Max=0xfffffff;
int r[1000000],a[N+100],b[N+100],z;
int main()
{
int a0,b0,i,j;
for (i=2;i<=N;i++)
if (!a[i])
{
b[++z]=i;
for (j=i*2;j<=N;j+=i) a[j]=1;
}
while (cin>>a0>>b0)
{
memset(r,0,sizeof(r));
int t=0,dis,mmax=-1,mmin=Max,m1,m2;
for (i=1;i<=z;i++)
{
int s,t;
s=(a0-1)/b[i]+1;
t=b0/b[i];
for (j=s;j<=t;j++)
if (j>1) r[j*b[i]-a0]=1;
}
int k=-1;
for (i=0;i<=b0-a0;i++)
if (!r[i])
{
if (k!=-1)
{
dis=i-k;
if (dis>mmax)
{
mmax=dis;
m1=i+a0;
}
if (dis<mmin)
{
mmin=dis;
m2=i+a0;
}
}
if (i+a0!=1) k=i;
}
if (mmax<0)
{
cout<<"There are no adjacent primes."<<endl;
}
else
{
cout<<m2-mmin<<','<<m2<<" are closest, ";
cout<<m1-mmax<<','<<m1<<" are most distant."<<endl;
}
}
return 0;
}