JavaDS —— LRUCache

概念

LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。

什么是Cache?狭义的Cache指的是位于CPU和主存间的快速RAM, 通常它不像系统主存那样使用DRAM技术,而使用昂贵但较快速的SRAM技术。 广义上的Cache指的是位于速度相差较大的两种硬件之间, 用于协调两者数据传输速度差异的结构。除了CPU与主存之间有Cache, 内存与硬盘之间也有Cache,乃至在硬盘与网络之间也有某种意义上的Cache── 称为Internet临时文件夹或网络内容缓存等。

Cache的容量有限,因此当Cache的容量用完后,而又有新的内容需要添加进来时, 就需要挑选并舍弃原有
的部分内容,从而腾出空间来放新内容。

LRU Cache 的替换原则就是将最近最少使用的内容替换掉。

其实,LRU译成最久未使用会更形象, 因为该算法每次替换掉的就是一段时间内最久没有使用过的内容。

LRUCache 的运行机制

LRUCache 使用的是 哈希表加双向链表的 数据结构进行实现的,由于使用哈希表,那么查找的时间复杂度为O(1),使用双向链表,那么在插入和删除结点的时间复杂度页为 O(1),总体来看,LRUCache 的查找、插入以及删除的时间复杂度均为O(1),效率十分的高
在这里插入图片描述

数据的插入是以尾插的形式进行的,如果空间不够的话,就会删除最前面的数据,然后再执行插入操作。

如果更新或者访问数据的话,就会将数据放到最后面。

因此,LRUCahche 会将经常访问的数据放在后面,将不经常访问的数据放在前面,如果插入的时候,发现空间不够,就会删除前面的数据也就是不经常访问的数据。

LinkedHashMap

在Java 中,类似LRUCahe的数据结构是 LinkedHashMap.

构造方法:
在这里插入图片描述

参数说明:
1.initialCapacity 初始容量大小,使用无参构造方法时,此值默认是16
2.loadFactor 加载因子,使用无参构造方法时,此值默认是 0.75f

3.accessOrder
false:基于插入顺序
true:基于访问顺序

解释一下 accessOrder,accessOrder 表示你有没有需求——把经常访问到的数据放到后面,把不经常访问到的数据放到前面,如果你有这个需求可以设置为 true (也就是基于访问顺序进行对数据的管理),如果你没有这个需求,只是单纯的插入数据,那么可以指定为 false

大家页看到了还有其他一些构造方法,这些构造方法不需要指定 accessOrder,那么Java 会默认你是 基于访问顺序,也就是 accessOrder = true 来进行管理数据,毕竟 LinkedHashMap 是 LRUCache 数据结构。

演示:
asscessOrder 等于 false, 基于插入顺序管理数据。

    public static void main(String[] args) {
        LinkedHashMap<Integer,Character> map = new LinkedHashMap<>(5,0.7f,false);
        map.put(3,'c');
        map.put(2,'d');
        map.put(5,'s');

        map.get(2);
        System.out.println(map);
        map.get(3);
        System.out.println(map);
    }

在这里插入图片描述


accessOrder 等于 true ,基于访问顺序 管理数据:

    public static void main(String[] args) {
        LinkedHashMap<Integer,Character> map = new LinkedHashMap<>(5,0.7f,true);
        map.put(3,'c');
        map.put(2,'d');
        map.put(5,'s');
        System.out.println(map);

        map.get(2);
        System.out.println(map);
        map.get(3);
        System.out.println(map);
    }

在这里插入图片描述

模拟实现

结构定义

我们需要哈希表和双向链表两种数据结构,这里我们直接使用哈希表 HashMap,就不模拟哈希表的实现了。哈希表我们存放 key 和 Node 这两个数值,这样我们就可以通过 key 获取到 key 所在的结点了。

双向链表需要结点,我们来定义结点:

static class Node {
        int key;
        int val;

        Node prev;
        Node next;

        public Node(int key, int val) {
            this.key = key;
            this.val = val;
        }

        public Node() {}
    }

我们使用双向链表进行插入和删除的时候,可以提前定义好两个空结点,方便我们插入和删除操作,所以上面的结点里面还定义了空的构造方法。

除此之外,我们还需要两个成员变量,一个用来记录当前使用了多少的空间,另一个则是用来记录容量的大小。

    HashMap<Integer,Node> map;
    int useSized; //使用空间
    int capacity; //容量

    //两个辅助结点,便于插入和删除操作
    Node head;
    Node tail;

最后我们来搭建LRUCache 的两个构造方法:

    //提供构造方法
    public LRUCache() {
        capacity = 3;
        map = new HashMap<>();
        head = new Node();
        tail = new Node();
        head.next = tail;
        tail.prev = head;
    }

    public LRUCache(int capacity) {
        this.capacity = capacity;
        map = new HashMap<>();
        head = new Node();
        tail = new Node();
        head.next = tail;
        tail.prev = head;
    }

查找

使用哈希表的 get 方法,就可以找到对应的结点。

    //查找
    public Node get(int key) {
        return map.get(key);
    }

删除

删除某个数值,我们先通过哈希表得到结点,然后对链表和哈希表同时进行删除操作。

    public boolean remove(int key) {
        Node node = get(key);
        if(node == null) {
            return false;
        }
        removeNode(node);
        return true;
    }

    private void removeNode(Node node) {
        node.prev.next = node.next;
        node.next.prev = node.prev;
        map.remove(node.key);
    }

插入

插入首先我们要找到是否已经存在 key 这个数值

如果存在,我们则需要更新数据,然后将结点插入到后面。

如果不存在,我们就需要查看当前的useSized 是不是已经达到最大容量了,如果达到最大容量,我们需要先删除前面的一个有效结点,再去插入新结点;如果没有达到最大容量,我们直接插入结点即可,同时 useSized + 1。

    //插入
    public void put(int key, int val) {
        Node node = get(key);
        Node newNode = new Node(key,val);
        if(node == null) {
            //如果不存在这个结点,需要插入到尾巴
            if(useSized == capacity) {
                //需要进行删除
                removeFrontNode();
                //插入
                insertToTail(newNode);
            } else {
                //插入
                insertToTail(newNode);
                useSized++;
            }
        } else {
            //如果存在这个结点,需要进行更新操作,并且最后要将结点插入到尾巴
            removeNode(node);
            insertToTail(newNode);
        }
    }

这时候剩下的就是链表的基本操作了:

    private void insertToTail(Node node) {
        Node prev = tail.prev;
        tail.prev = node;
        node.next = tail;
        node.prev = prev;
        prev.next = node;
        map.put(node.key,node);
    }

    private void removeFrontNode() {
        Node del = head.next;
        head.next = del.next;
        del.next.prev = head;
        map.remove(del.key);
    }

最终代码

import java.util.HashMap;

public class LRUCache {

    HashMap<Integer,Node> map;
    int useSized; //使用空间
    int capacity; //容量

    //两个辅助结点,便于插入和删除操作
    Node head;
    Node tail;

    static class Node {
        int key;
        int val;

        Node prev;
        Node next;

        public Node(int key, int val) {
            this.key = key;
            this.val = val;
        }

        public Node() {}
    }

    //提供构造方法
    public LRUCache() {
        capacity = 3;
        map = new HashMap<>();
        head = new Node();
        tail = new Node();
        head.next = tail;
        tail.prev = head;
    }

    public LRUCache(int capacity) {
        this.capacity = capacity;
        map = new HashMap<>();
        head = new Node();
        tail = new Node();
        head.next = tail;
        tail.prev = head;
    }

    //插入
    public void put(int key, int val) {
        Node node = get(key);
        Node newNode = new Node(key,val);
        if(node == null) {
            //如果不存在这个结点,需要插入到尾巴
            if(useSized == capacity) {
                //需要进行删除
                removeFrontNode();
                //插入
                insertToTail(newNode);
            } else {
                //插入
                insertToTail(newNode);
                useSized++;
            }
        } else {
            //如果存在这个结点,需要进行更新操作,并且最后要将结点插入到尾巴
            removeNode(node);
            insertToTail(newNode);
        }
    }

    public boolean remove(int key) {
        Node node = get(key);
        if(node == null) {
            return false;
        }
        removeNode(node);
        return true;
    }

    private void removeNode(Node node) {
        node.prev.next = node.next;
        node.next.prev = node.prev;
        map.remove(node.key);
    }

    private void insertToTail(Node node) {
        Node prev = tail.prev;
        tail.prev = node;
        node.next = tail;
        node.prev = prev;
        prev.next = node;
        map.put(node.key,node);
    }

    private void removeFrontNode() {
        Node del = head.next;
        head.next = del.next;
        del.next.prev = head;
        map.remove(del.key);
    }

    //查找
    public Node get(int key) {
        return map.get(key);
    }
}
评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值