域自适应——Bidirectional Learning for Domain Adaptation of Semantic Segmentation

本文提出一种用于语义分割的双向学习系统,结合图像翻译和分割适应模型,形成闭环学习。通过自监督学习算法在特征层面逐步调整目标域和源域,同时在图像翻译中引入感知损失,监督翻译过程。实验使用GTA5作为源数据集,Cityscapes作为目标数据集,采用CycleGAN进行图像翻译,DeepLab V2进行语义分割。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**

论文题目:Bidirectional Learning for Domain Adaptation of Semantic Segmentation

**
本文的域位移是针对虚拟数据和真实数据之间的。
本文的贡献是:(1)提出了一种语义分割的双向学习系统,它是一个学习分割适应模型和图像翻译模型的闭环学习系统。(2)对于语义分割,提出了一种基于图像翻译结果的自监督学习算法,该算法在特征层次上逐步调整目标域和源域。(3)在图像到图像的翻译中引入了感知损失,通过更新分割自适应模型来监督图像翻译的过程。

方法

在这里插入图片描述

一 模型

1.双向学习

我们的学习过程如图1(b)。F是在没有成对的例子的情况下,学习将图像从S域转换成T域。T是在F(S)上训练的分割网络。S有标签,T没有标签。
(1)前向过程是用F翻译的结果图像分F(S)和T来训练M,F(S)的标签还是S的标签。M的LOSS函数为:
在这里插入图片描述
前一项是对抗损失,后一项是分割损失。
(2)后向过程是本文新添加的。为了提高翻译结果的质量,在图像翻译网络中使用了一种感知损失,它测量从一个预先训练好的目标识别网络中获得的特征的距离。这里,我们用M计算特征来测量感知损失。通过加入另外两个损失:GAN损失和图像重建损失,定义学习F的损失函数为:

### TSNE Algorithm for Domain Adaptation in Machine Learning t-SNE (t-distributed Stochastic Neighbor Embedding) is a powerful tool used primarily for dimensionality reduction and visualization, particularly suited for high-dimensional data sets. In the context of domain adaptation within machine learning, t-SNE can play an important role by helping visualize how well source-domain features align with target-domain features after applying various domain adaptation techniques[^1]. When adapting models from one domain to another, ensuring that feature distributions between domains are similar becomes crucial. By using t-SNE on adapted features, researchers gain insights into whether their methods effectively reduce discrepancies across different datasets or environments. For instance, when visualizing results obtained through bidirectional learning approaches aimed at improving semantic segmentation tasks under changing conditions, t-SNE plots provide intuitive graphical representations showing clusters corresponding to each class before and after adaptation processes have been applied[^2]. This allows practitioners not only to assess visually but also quantitatively measure improvements achieved via specific algorithms designed specifically for this purpose. Moreover, combining clustering techniques like DBSCAN as mentioned previously with t-SNE offers additional benefits such as identifying outliers more easily while exploring complex structures present within multidimensional spaces transformed during cross-domain mappings[^3]. ```python import numpy as np from sklearn.manifold import TSNE import matplotlib.pyplot as plt def plot_tsne(source_features, target_features): combined_data = np.vstack((source_features, target_features)) tsne = TSNE(n_components=2, random_state=42) embedded_data = tsne.fit_transform(combined_data) plt.figure(figsize=(8, 6)) plt.scatter(embedded_data[:len(source_features), 0], embedded_data[:len(source_features), 1], c='r', label="Source Features", alpha=0.5) plt.scatter(embedded_data[len(source_features):, 0], embedded_data[len(source_features):, 1], c='b', label="Target Features", alpha=0.5) plt.title('t-SNE Visualization') plt.legend() plt.show() # Example usage: # Assuming `source` and `target` contain pre-extracted feature vectors. plot_tsne(source, target) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值