**
论文题目:Bidirectional Learning for Domain Adaptation of Semantic Segmentation
**
本文的域位移是针对虚拟数据和真实数据之间的。
本文的贡献是:(1)提出了一种语义分割的双向学习系统,它是一个学习分割适应模型和图像翻译模型的闭环学习系统。(2)对于语义分割,提出了一种基于图像翻译结果的自监督学习算法,该算法在特征层次上逐步调整目标域和源域。(3)在图像到图像的翻译中引入了感知损失,通过更新分割自适应模型来监督图像翻译的过程。
方法
一 模型
1.双向学习
我们的学习过程如图1(b)。F是在没有成对的例子的情况下,学习将图像从S域转换成T域。T是在F(S)上训练的分割网络。S有标签,T没有标签。
(1)前向过程是用F翻译的结果图像分F(S)和T来训练M,F(S)的标签还是S的标签。M的LOSS函数为:
前一项是对抗损失,后一项是分割损失。
(2)后向过程是本文新添加的。为了提高翻译结果的质量,在图像翻译网络中使用了一种感知损失,它测量从一个预先训练好的目标识别网络中获得的特征的距离。这里,我们用M计算特征来测量感知损失。通过加入另外两个损失:GAN损失和图像重建损失,定义学习F的损失函数为: