陶哲轩实分析 3.5 节习题试解

本文探讨了集合论中关于有序对和有序n元组的定义及其性质,包括等价性、反身性、对称性和传递性的证明。进一步讨论了笛卡尔乘积的性质,并证明了与集合运算的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.5.1

第一种定义:
(x,y):={{x},{x,y}}(x,y) := \{\{x\},\{x,y\}\} (x,y):={{x},{x,y}}
(x′,y′):={{x′},{x′,y′}} (x',y'):=\{\{x'\}, \{x',y'\}\} (x,y):={{x},{x,y}}

x=x′,y=y′x= x', y = y'x=x,y=y 时,很容易证明 {{x},{x,y}}={{x′},{x′,y′}}\{\{x\},\{x,y\}\} = \{\{x'\}, \{x',y'\}\}{{x},{x,y}}={{x},{x,y}}
因此我们只要证明当 {{x},{x,y}}={{x′},{x′,y′}}\{\{x\},\{x,y\}\} = \{\{x'\}, \{x',y'\}\}{{x},{x,y}}={{x},{x,y}} 成立时,能推出 x=x′,y=y′x= x', y = y'x=x,y=y
{{x},{x,y}}\{\{x\},\{x,y\}\}{{x},{x,y}}{{x′},{x′,y′}}\{\{x'\}, \{x',y'\}\}{{x},{x,y}} 都是双元素集(或者都是单元素集)。 两个双元素集相等可以分两种情况。
{x}={x′}\{x\} = \{x'\}{x}={x} 或者 {x}={x′,y′}\{x\} =\{x',y'\}{x}={x,y} 下面分别来讨论。

  1. {x}={x′}\{x\} = \{x'\}{x}={x} 这时有 x=x′x=x'x=x{x,y}={x′,y′}\{x,y\}=\{x',y'\}{x,y}={x,y} ,那么可知 y=y′y=y'y=y
  2. {x}={x′,y′}\{x\} =\{x',y'\}{x}={x,y} 这时说明 {x′,y′}\{x',y'\}{x,y} 也是单元素集。所以 x′=y′=xx' = y'=xx=y=x,同理,{x,y}\{x,y\}{x,y} 也是单元素集,y=xy = xy=x
    这两种情况下都有 x=x′,y=y′x = x', y = y'x=x,y=y

第二种定义:
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \begin{split} …
证明这个定义也是有效的,还是需要从正反两方面来证明。
x=x′,y=y′x= x', y = y'x=x,y=y 时,很容易证明 {x,{x,y}}={x′,{x′,y′}}\{x,\{x,y\}\} = \{x', \{x',y'\}\}{x,{x,y}}={x,{x,y}}
难点还是在反方向的证明:假设 {x,{x,y}}={x′,{x′,y′}}\{x,\{x,y\}\} = \{x', \{x',y'\}\}{x,{x,y}}={x,{x,y}},如何证明 x=x′,y=y′x= x', y = y'x=x,y=y
由于等号两边都是双元素集(不能是单元素集,否则违反正则性),所以还是分两种情况:
情形一:设 x=x′x=x'x=x 这时有 {x,y}={x′,y′}\{x,y\}=\{x',y'\}{x,y}={x,y} 必然能推出 y=y′y=y'y=y
情形二:设 x={x′,y′}x = \{x',y'\}x={x,y} 这时 {x,y}≠{x′,y′}\{x,y\} \neq\{x',y'\}{x,y}={x,y} (否则违反正则性)。
那么 x={x′,y′},{x,y}=x′x = \{x',y'\},\{x,y\}=x'x={x,y},{x,y}=x 。因此 x′∈x,x∈x′x' \in x, x \in x'xx,xx
我们可以构造一个集合 {x,x′}\{x, x'\}{x,x} ,对于这个集合有:
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \begin{split} …
这说明:
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \begin{split} …
而正则性公理要求 {x,x′}⋂x\{x,x'\} \bigcap x{x,x}x{x,x′}⋂x′\{x,x'\} \bigcap x'{x,x}x 至少有一个是空集。所以情形二是不成立的。那么就只剩下情形一,这时有$ x=x’, y= y’$ 所以第二种定义是有效的。

3.5. 2 假设我们把有序n元组定义为一个满射函数 x:{i∈N,1≤i≤n}→Xx:\{i \in N, 1 \leq i \leq n\} \rightarrow Xx:{iN,1in}X,其值域是某个任意的集合X,那么我们把x(i) 写成 xix_ixi,并把 xxx 写成 (xi)1≤i≤n(x_i)_{1 \leq i \leq n}(xi)1in , 用这个来验证 (xi)1≤i≤n=(yi)1≤i≤n(x_i)_{1 \leq i \leq n} = (y_i)_{1 \leq i \leq n}(xi)1in=(yi)1in 当且仅当对于一切的 1≤i≤n1 \leq i \leq n1inxi=yix_i = y_ixi=yi。同时证明:如果 (Xi)1≤i≤n(X_i)_{1 \leq i \leq n}(Xi)1in 是集合的一个有序n元组,那么在定义3.5.7 中定义的笛卡尔乘积的确是一个集合。

这个问题分成两问,第一问是:验证 (xi)1≤i≤n=(yi)1≤i≤n(x_i)_{1 \leq i \leq n} = (y_i)_{1 \leq i \leq n}(xi)1in=(yi)1in 当且仅当对于一切的 1≤i≤n1 \leq i \leq n1inxi=yix_i = y_ixi=yi。题目中把有序n元组定义为一个满射函数。根据定义 3.3.7,这一问就是两个函数相等的定义。所以是成立的。

第二问:如果 (Xi)1≤i≤n(X_i)_{1 \leq i \leq n}(Xi)1in 是集合的一个有序n元组,那么在定义3.5.7 中定义的笛卡尔乘积的确是一个集合

构造一个满射函数 f:{i∈N,1≤i≤n}→∪Xif:\{i \in N, 1 \leq i \leq n\} \rightarrow \cup X_if:{iN,1in}Xi ,那么所有不同的 f,构成一个集合 F
那么根据选择定理,{f∈F:f(i)∈Xi}\{ f \in F : f(i) \in X_i\}{fF:f(i)Xi} 也是一个集合,这个集合就是问题中的笛卡尔乘积

3.5.3 证明对于序偶及有序 n 元组,相等的定义遵从反身性、对称性、传递性

证明: 首先有序n元组的定义包括了序偶,因此我们下面只针对有序n元组进行证明。不再对序偶单独证明。
一个有序n元组 (x1,x2,…,xn)=(y1,y2,…,yn)(x_1, x_2, \dots , x_n) = (y_1, y_2, \dots, y_n)(x1,x2,,xn)=(y1,y2,,yn) 根据定义,等价于 ∀i∈[1,n],xi=yi\forall i \in [1, n], x_i = y_ii[1,n],xi=yi
那么 ∀i∈[1,n],xi=xi\forall i \in [1, n], x_i = x_ii[1,n],xi=xi 所有 (x1,x2,…,xn)=(x1,x2,…,xn)(x_1,x_2,\dots,x_n) = (x_1,x_2,\dots,x_n)(x1,x2,,xn)=(x1,x2,,xn) ,所以遵从反身性

∀i∈[1,n],xi=yi\forall i \in [1, n], x_i = y_ii[1,n],xi=yi ,那么 ∀i∈[1,n],yi=xi\forall i \in [1, n], y_i = x_ii[1,n],yi=xi 所以 (y1,y2,…,yn)=(x1,x2,…,xn)(y_1, y_2, \dots, y_n) = (x_1,x_2,\dots, x_n)(y1,y2,,yn)=(x1,x2,,xn),所以满足对称性

∀i∈[1,n],xi=yi\forall i \in [1, n], x_i = y_ii[1,n],xi=yi 同时,∀i∈[1,n],yi=zi\forall i \in [1, n], y_i = z_ii[1,n],yi=zi 那么 ∀i∈[1,n],xi=zi\forall i \in [1, n], x_i = z_ii[1,n],xi=zi,所以 (x1,x2,…,xn)=(z1,z2,…,zn)(x_1, x_2, \dots , x_n) = (z_1, z_2, \dots, z_n)(x1,x2,,xn)=(z1,z2,,zn) ,所以满足传递性

3.5.4 A,B,CA,B,CA,B,C 是集合,证明:

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ A \times (B \c…

(1) 证明 A×(B∪C)=(A×B)∪(A×C)A \times (B \cup C) = (A \times B) \cup (A \times C)A×(BC)=(A×B)(A×C)
A×(B∪C)A \times (B \cup C)A×(BC) 等价于
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \{(x, y): x \i…其中 {(x,y):x∈A,y∈B}\{(x, y): x \in A, y \in B\}{(x,y):xA,yB} 等价于 (A×B)(A \times B)(A×B){(x,y):x∈A,y∈C}\{(x, y): x \in A, y \in C\}{(x,y):xA,yC} 等价于 (A×C)(A \times C)(A×C)

所以 {(x,y):x∈A,y∈B}∪{(x,y):x∈A,y∈C}\{(x, y): x \in A, y \in B\} \cup \{(x, y): x \in A, y \in C\}{(x,y):xA,yB}{(x,y):xA,yC} 等价于 (A×B)∪(A×C)(A \times B) \cup (A \times C)(A×B)(A×C)

(2) 证明 A×(B∩C)=(A×B)∩(A×C)A \times (B \cap C) = (A \times B) \cap (A \times C)A×(BC)=(A×B)(A×C)
A×(B∩C)A \times (B \cap C)A×(BC) 等价于 {(x,y):x∈A,y∈(B∩C)}\{(x,y): x \in A, y \in (B \cap C)\}{(x,y):xA,y(BC)}
{(x,y):x∈A,y∈(B∩C)}={(x,y):x∈A,y∈B,y∈C}={(x,y):x∈A,y∈B}∩{(x,y):x∈A,x∈C}\{(x,y): x \in A, y \in (B \cap C)\} = \{(x, y): x \in A, y \in B, y \in C\} = \{(x,y): x \in A, y \in B\} \cap \{(x,y): x \in A, x \in C\}{(x,y):xA,y(BC)}={(x,y):xA,yB,yC}={(x,y):xA,yB}{(x,y):xA,xC}

所以: A×(B∩C)=(A×B)∩(A×C)A \times (B \cap C) = (A \times B) \cap (A \times C)A×(BC)=(A×B)(A×C)

(3) 证明 A×(B\C)=(A×B)\(A×C)A \times (B \backslash C) = (A \times B) \backslash (A \times C)A×(B\C)=(A×B)\(A×C)

A×(B\C)A \times (B \backslash C)A×(B\C) 等价于:{(x,y):x∈A,y∈(B\C)}={(x,y):x∈A,y∈B,y∉C}={(x,y):x∈A,y∈B}\{(x,y):x∈A,y∈C}\{(x, y): x \in A, y \in (B \backslash C)\} = \{(x,y): x \in A, y \in B, y\notin C\} = \{(x,y): x \in A, y \in B\} \backslash \{(x,y): x \in A, y \in C\}{(x,y):xA,y(B\C)}={(x,y):xA,yB,y/C}={(x,y):xA,yB}\{(x,y):xA,yC}
所以 A×(B\C)=(A×B)\(A×C)A \times (B \backslash C) = (A \times B) \backslash (A \times C)A×(B\C)=(A×B)\(A×C)

3.5.5 设 A、B、C、D 是集合,证明:

(1) (A×B)∩(C×D)=(A∩C)×(B×D)(A \times B) \cap (C \times D) = (A \cap C) \times (B \times D)(A×B)(C×D)=(AC)×(B×D)
(2)(A×B)∪(C×D)=(A∪C)×(B∪D)(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)(A×B)(C×D)=(AC)×(BD) 是否成立?
(3)(A×B)\(C×D)=(A\C)×(B\D)(A \times B) \backslash (C \times D) = (A \backslash C) \times (B \backslash D)(A×B)\(C×D)=(A\C)×(B\D) 是否成立?

(1)(A×B)(A \times B)(A×B) 等价于{(x,y):x∈A,y∈B}\{(x,y): x \in A, y \in B\}{(x,y):xA,yB}
(C×D)(C \times D)(C×D) 等价于 {(x,y):x∈C,y∈D}\{(x,y): x \in C, y \in D\}{(x,y):xC,yD}
所以有:
KaTeX parse error: No such environment: split at position 8: \begin{̲s̲p̲l̲i̲t̲}̲ & (A \times B…

(2) 不成立,因为我们可以举出反例:
我们可以构造个序偶(x,y)(x, y)(x,y) 满足 x∈A\C,y∈D\Bx \in A \backslash C, y \in D \backslash BxA\C,yD\B。 那么 (x,y)∉(A×B)(x,y) \notin (A \times B)(x,y)/(A×B) 同时,(x,y)∉(C×D)(x,y) \notin (C \times D)(x,y)/(C×D)
所以 (x,y)∉(A×B)∪(C×D)(x,y) \notin (A \times B) \cup (C \times D)(x,y)/(A×B)(C×D)
但是我们知道x∈(A∪C),y∈(B∪D)x \in (A \cup C), y \in (B \cup D)x(AC),y(BD),所以 (x,y)∈(A∪C)×(B∪D)(x, y) \in (A \cup C) \times (B \cup D)(x,y)(AC)×(BD)
所以 (A×B)∪(C×D)≠(A∪C)×(B∪D)(A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D)(A×B)(C×D)=(AC)×(BD)

(3)不成立,我们可以举出反例:
我们可以构造个序偶(x,y)(x, y)(x,y) 满足x∈A\C,y∈B∩Dx \in A \backslash C, y \in B \cap DxA\C,yBD
那么 (x,y)∈A×B(x, y) \in A \times B(x,y)A×B, (x,y)∉C×D(x,y) \notin C \times D(x,y)/C×D, 所以 (x,y)∈(A×B)\(C×D)(x,y) \in (A \times B) \backslash (C \times D)(x,y)(A×B)\(C×D)
我们又知道 y∉B\Dy \notin B \backslash Dy/B\D,所以 (x,y)∉(A\C)×(B\D)(x,y) \notin (A \backslash C) \times (B \backslash D)(x,y)/(A\C)×(B\D)
所以 (A×B)\(C×D)≠(A\C)×(B\D)(A \times B) \backslash (C \times D) \neq (A \backslash C) \times (B \backslash D)(A×B)\(C×D)=(A\C)×(B\D)

3.5.6 设 A、B、C、D 是非空集合,证明:

(1)A×B⊆C×DA \times B \subseteq C \times DA×BC×D 当且仅当 A⊆C,B⊆DA \subseteq C, B \subseteq DAC,BD
(2)A×B=C×DA \times B = C \times DA×B=C×D 当且仅当 A=C,B=DA = C, B = DA=C,B=D

证明(1):
KaTeX parse error: No such environment: split at position 8: \begin{̲s̲p̲l̲i̲t̲}̲ & A \times B …
证明(2):
$$
\begin{split}
& A \times B = C \times D \
& \Leftrightarrow
\begin{cases}
\forall (x,y) \in A \times B \Rightarrow (x,y) \in C \times D \
\forall (x,y) \in C \times D \Rightarrow (x,y ) \in A \times B
\end{cases}\
& \Leftrightarrow
\begin{cases}
\forall x \in A \Rightarrow x \in C \
\forall x \in C \Rightarrow x \in A \
\forall y \in B \Rightarrow x \in D \
\forall y \in D \Rightarrow x \in B \
\end{cases} \
& \Leftrightarrow
\begin{cases}
A = C \
B = D
\end{cases}

\end{split}
$$

3.5.7 设 X、Y 是集合,并设 πX×Y→X(x,y):=x\pi_{X \times Y \rightarrow X} (x,y) := xπX×YX(x,y):=xπX×Y→X(x,y):=y\pi_{X \times Y \rightarrow X} (x,y) := yπX×YX(x,y):=y 。证明对于任何函数 f:Z→Xf:Z \rightarrow Xf:ZXg:Z→Yg : Z \rightarrow Yg:ZY 存在唯一的函数 h:Z→X×Yh: Z \rightarrow X \times Yh:ZX×Y,使得 πX×Y→X∘h=f\pi_{X \times Y \rightarrow X} \circ h = fπX×YXh=fπX×Y→Y∘h=g\pi_{X \times Y \rightarrow Y} \circ h = gπX×YYh=g

证明:设 h(z):=(hx(z),hy(z))h(z) := (h_x(z), h_y(z))h(z):=(hx(z),hy(z)) ,那么 hx(z)=f(z),hy(z)=g(z)h_x(z) = f(z), h_y(z) = g(z)hx(z)=f(z),hy(z)=g(z) 所以 hhh 是唯一确定的。

3.5.8 设 X1,…,XnX_1, \dots, X_nX1,,Xn 是集合,那么笛卡尔积 ∏i=1nXi\prod_{i=1}^{n}X_ii=1nXi 是空的,当且仅当至少有一个XiX_iXi 是空的。

(1)当 XiX_iXi 是空的时,∏i=1nXi\prod_{i=1}^{n}X_ii=1nXi 是空的。
(2)用反证法证明 ∏i=1nXi\prod_{i=1}^{n}X_ii=1nXi 是空的,可以推出 X1,…,XnX_1, \dots, X_nX1,,Xn 至少有一个是空。
假设 X1,…,XnX_1, \dots, X_nX1,,Xn 全都不空,那么对于任意的1≤i≤n1 \leq i \leq n1in我们可以选出 xi∈Xix_i \in X_ixiXi
那么 (x1,…,xn)(x_1, \dots, x_n)(x1,,xn)∏i=1nXi\prod_{i=1}^{n}X_ii=1nXi 的一个元素。所以 ∏i=1nXi\prod_{i=1}^{n}X_ii=1nXi 非空。

3.5.9 假设I 和J 是两个集合,并且对于一切 α∈I\alpha \in IαI, AαA_\alphaAα 是一个集合,对于一切 β∈J\beta \in JβJ, BβB_\betaBβ 也是一个集合。证明:

KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ (\cup_{\alpha …

(1) 先证明 (∪α∈IAα)∩(∪β∈JBβ)(\cup_{\alpha \in I} A_\alpha) \cap (\cup_{\beta \in J} B_\beta)(αIAα)(βJBβ) 中的元素都是 ∪(α,β)∈I×J(Aα∩Bβ)\cup_{(\alpha, \beta)\in I \times J} (A_\alpha \cap B_\beta)(α,β)I×J(AαBβ) 的元素。

x∈(∪α∈IAα)∩(∪β∈JBβ)x \in (\cup_{\alpha \in I} A_\alpha) \cap (\cup_{\beta \in J} B_\beta)x(αIAα)(βJBβ)
那么 x∈∪α∈IAαx \in \cup_{\alpha \in I} A_\alphaxαIAα ,同时 x∈∪β∈JBβx \in \cup_{\beta \in J} B_\betaxβJBβ
那么 ∃α∈I,x∈Aα\exists \alpha \in I, x \in A_\alphaαI,xAα ,同时 ∃β∈J,x∈Bβ\exists \beta \in J, x \in B_\betaβJ,xBβ
那么 ∃(α,β)∈I×J,x∈Aα∩Bβ\exists (\alpha, \beta) \in I \times J, x \in A_\alpha \cap B_\beta(α,β)I×J,xAαBβ
那么 x∈∪(α,β)∈I×J(Aα∩Bβ)x \in \cup_{(\alpha, \beta)\in I \times J} (A_\alpha \cap B_\beta)x(α,β)I×J(AαBβ)

(2) 再证明 ∪(α,β)∈I×J(Aα∩Bβ)\cup_{(\alpha, \beta)\in I \times J} (A_\alpha \cap B_\beta)(α,β)I×J(AαBβ) 的元素也都是 (∪α∈IAα)∩(∪β∈JBβ)(\cup_{\alpha \in I} A_\alpha) \cap (\cup_{\beta \in J} B_\beta)(αIAα)(βJBβ) 的元素。
x∈∪(α,β)∈I×J(Aα∩Bβ)x \in \cup_{(\alpha, \beta)\in I \times J} (A_\alpha \cap B_\beta)x(α,β)I×J(AαBβ)
那么 ∃(α,β)∈I×J,x∈Aα∩Bβ\exists (\alpha, \beta) \in I \times J, x \in A_\alpha \cap B_\beta(α,β)I×J,xAαBβ
那么 ∃α∈I,x∈Aα\exists \alpha \in I, x \in A_\alphaαI,xAα ,同时 ∃β∈J,x∈Bβ\exists \beta \in J, x \in B_\betaβJ,xBβ
那么 x∈∪α∈IAαx \in \cup_{\alpha \in I} A_\alphaxαIAα ,同时 x∈∪β∈JBβx \in \cup_{\beta \in J} B_\betaxβJBβ
那么 x∈(∪α∈IAα)∩(∪β∈JBβ)x \in (\cup_{\alpha \in I} A_\alpha) \cap (\cup_{\beta \in J} B_\beta)x(αIAα)(βJBβ)

3.5.10 f:X→Yf: X \rightarrow Yf:XY 是一个函数,定义 f 的图像是由 {(x,f(x)):x∈X}\{(x, f(x)): x \in X\}{(x,f(x)):xX} 确定的 X×YX \times YX×Y 的子集。证明两个函数相等当且仅当它们有相同的图像。反之,如果 G 是 X×YX \times YX×Y 的一个子集,具有这样的性质:对于每一个 x∈Xx \in XxX,集合 {y∈Y:(x,y)∈G}\{y \in Y:(x,y) \in G\}{yY:(x,y)G} 恰有一个元素,证明恰存在一个函数 f:X→Yf:X \rightarrow Yf:XY,它的图像等于 G。

第一问:设 fff 的图像为 FFFggg 的图像为 GGG

(1)先证明 f=gf=gf=g 可以推出 F=GF = GF=G。(略)
(2)再证明 F=GF = GF=G 可以推出 f=gf =gf=g。(略)

第二问:(1)先证明存在函数 fff,(2)再证明函数 fff 是唯一的。
(1) 很简单,这里略
(2)反证法,假设 f,gf, gf,g 都满足图像为 GGG。由第一问可知,f=gf=gf=g

3.5.11 证明公理 3.10 可以从引理 3.4.9 和集合论的其他公理推导出来。于是引理3.4.9 可以作为幂集公理的替换形式。

幂集公理:设 XXXYYY 是集合,从 XXXYYY 的一切函数形成一个集合YXY^XYX
集合 XXXYYY 可以形成笛卡尔乘积 X×YX\times YX×Y。那么由引理3.4.9可知,X×YX\times YX×Y的所有子集形成一个集合 2X×Y2^{X \times Y}2X×Y,这个集合称为 X×YX \times YX×Y 的幂集。
使用公理 3.5 (分离公理),可以把满足垂线判别法的X×YX\times YX×Y的子集取出,这个子集就是 YXY^XYX

3.5.12 设 f:N×N→Nf:N \times N \rightarrow Nf:N×NN 是一个函数,并设 c 是一个自然数,证明存在一个函数 a:N→Na: N \rightarrow Na:NN ,使得 a(0)=ca(0)=ca(0)=c,并且对于一切 n∈Nn \in NnN 满足 a(n++)=f(n,a(n))a(n++) =f(n,a(n))a(n++)=f(n,a(n)),进而证明这个函数是唯一的。

3.5.13

不会做。。

3.5.14

不会做。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值