动态规划3 高楼扔鸡蛋

这篇博客讨论了如何使用动态规划解决887题,即确定最少操作次数找到鸡蛋摔碎的楼层范围。介绍了三种方法,包括通用方法、利用二分法减少搜索次数以及重新定义状态矩阵来优化问题解决。通过分析不同情况下的鸡蛋和楼层组合,找到最优策略以确定鸡蛋在哪一层会破碎。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

887. 鸡蛋掉落

难度困难668收藏分享切换为英文接收动态反馈

给你 k 枚相同的鸡蛋,并可以使用一栋从第 1 层到第 n 层共有 n 层楼的建筑。

已知存在楼层 f ,满足 0 <= f <= n ,任何从 高于 f 的楼层落下的鸡蛋都会碎,从 f 楼层或比它低的楼层落下的鸡蛋都不会破。

每次操作,你可以取一枚没有碎的鸡蛋并把它从任一楼层 x 扔下(满足 1 <= x <= n)。如果鸡蛋碎了,你就不能再次使用它。如果某枚鸡蛋扔下后没有摔碎,则可以在之后的操作中 重复使用 这枚鸡蛋。

请你计算并返回要确定 f 确切的值 的 最小操作次数 是多少?

方法一:通用方法

dp(k,n)定义:k个鸡蛋在第n层楼扔dp(k,n)次恰好没有碎

这里有一个最大和最小的关系:

最小关系:求dp(k,n)的最小值

最大关系:恰好没有碎,求的是鸡蛋破碎发生在搜索区间穷尽时,即下图所示的最大值

class Solution:
    def superEggDrop(self, k: int, n: int) -> int:
        memo = dict()
        def dp(k,n):
            if k == 1:return n
            if n == 0:return 0

            if (k,n) in memo:
                return memo[(k,n)]
            
            res = float('inf')
            
            for i in range(1,n+1):               #穷举搜索
                res = min( res,                  #最小关系
                    max(dp(k,n-i),dp(k-1,i-1))+1 #最大关系
                )
            memo[(k,n)] = res
            return res
        return dp(k,n)

方法二:使用二分法替换穷举搜索

那么注意 dp(K - 1, i - 1) 和 dp(K, N - i) 这两个函数, 其中 i 是从 1到 N 单增的, 如果我们固定 K 和 N , 把这两个函数看做关于 i 的函数, 前者随着 i 的增加应该也是单调递增的, ⽽后者随着 i 的增加应该是单调递减的:
这时候求⼆者的较⼤值, 再求这些最⼤值之中的最⼩值, 其实就是求这个交点嘛, 熟悉⼆分搜索的同学肯定敏感地想到了, 这不就是相当于求Valley(⼭⾕) 值嘛, 可以⽤⼆分查找来快速寻找这个点的。

class Solution:
    def superEggDrop(self, k: int, n: int) -> int:
        memo = dict()
        def dp(k,n):
            if k == 1:return n
            if n == 0:return 0

            if (k,n) in memo:
                return memo[(k,n)]
            
            res = float('inf')
            
            left,right =  1,n                     #二分查找
            while left <= right:
                mid = int(left + (right - left)/2)
                broken = dp(k-1,mid-1)
                notbroken = dp(k,n-mid)
                if broken > notbroken:
                    right = mid -1
                    res = min(res,broken +1)
                else:
                    left = mid +1
                    res = min(res,notbroken +1)
            memo[(k,n)] = res
            return res
        return dp(k,n)

方法三:重新定义状态矩阵

dp[k][m]=n

当前有k个鸡蛋,最多可以尝试m次,在这个状态下能测试n层楼

class Solution:
    def superEggDrop(self, k: int, n: int) -> int:
        dp = [[0]*(n+1) for i in range(k+1)]

        m = 0
        while(dp[k][m] < n):
            m += 1
            for k1 in range(1,k+1):
                dp[k1][m] = dp[k1-1][m-1] + 1 + dp[k1][m-1]
        return m

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值