AI绘画核心技术Diffusion模型,原来是这样画出来的!(自动生图,内附代码,人人可上手)


🤯🤯🤯 还在惊叹AI绘画的神奇?还在花钱求别人帮你生成图片?还在苦苦等待Midjourney的邀请码?别out了!今天,我们就来彻底揭秘AI绘画背后的核心技术——Diffusion模型,让你彻底搞懂它到底是怎么“画”出那些以假乱真的图像的!

🤔️ 焦虑的职场人,你是否也有这些困惑?

*   看到别人用AI生成的精美图片,羡慕不已,自己却无从下手?
*   想学习AI绘画,却被复杂的算法和代码吓退?
*   想提升自己的技能,却找不到通俗易懂的学习资料?

别担心!今天这篇文章,就是为你量身定制的!我们将用最通俗的语言,最形象的比喻,最简单的代码,带你一步步揭开Diffusion模型的神秘面纱!

先奉上源码:

import torch
import torchvision
from tqdm import tqdm
import matplotlib.pyplot as plt
from unet import SimpleUnet
from diffusion import NoiseScheduler


def sample(model, scheduler, num_samples, size, device="cpu"):
    """从噪声采样生成图像的函数
    Args:
        model: UNet模型,用于预测噪声
        scheduler: 噪声调度器,包含采样所需的所有系数
        num_samples: 要生成的样本数量
        size: 生成图像的大小,如(3,32,32)
        device: 运行设备
    Returns:
        生成的图像张量
    """
    model.eval()
    with torch.no_grad():
        # 从标准正态分布采样初始噪声 x_T ~ N(0,I)
        x_t = torch.randn(num_samples, *size).to(device)

        # 逐步去噪,从t=T到t=0
        for t in tqdm(reversed(range(scheduler.num_steps)), desc="Sampling"):
            # 构造时间步batch
            t_batch = torch.tensor([t] * num_samples).to(device)

            # 获取采样需要的系数
            sqrt_recip_alpha_bar = scheduler.get(scheduler.sqrt_recip_alphas_bar, t_batch, x_t.shape)
            sqrt_recipm1_alpha_bar = scheduler.get(scheduler.sqrt_recipm1_alphas_bar, t_batch, x_t.shape)
            posterior_mean_coef1 = scheduler.get(scheduler.posterior_mean_coef1, t_batch, x_t.shape)
            posterior_mean_coef2 = scheduler.get(scheduler.posterior_mean_coef2, t_batch, x_t.shape)

            # 预测噪声 ε_θ(x_t,t)
            predicted_noise = model(x_t, t_batch)

            # 计算x_0的预测值: x_0 = 1/sqrt(α_bar_t) * x_t - sqrt(1/α_bar_t-1) * ε_θ(x_t,t)
            _x_0 = sqrt_recip_alpha_bar * x_t - sqrt_recipm1_alpha_bar * predicted_noise
            # 计算后验分布均值 μ_θ(x_t,t)
            model_mean = posterior_mean_coef1 * _x_0 + posterior_mean_coef2 * x_t
            # 计算后验分布方差的对数值 log(σ_t^2)
            model_log_var = scheduler.get(torch.log(torch.cat([scheduler.posterior_var[1:2], scheduler.betas[1:]])), t_batch, x_t.s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值