在本篇文章中,我们将深入探讨如何使用 GPTQ (Generative Pre-trained Quantization) 进行4-bit大语言模型(LLM)的量化。在大规模语言模型训练和推理的背景下,模型的量化不仅能够大大降低计算成本,还能够提高推理速度,因此对构建高效的NLP模型有着极其重要的意义。
1. Optimal Brain Quantization
在量化的过程中,我们首先面临的是层级压缩问题,可以通过以下优化目标进行描述:
2. 剪枝技术 (Pruning Technique)
在剪枝过程中,我们希望通过以下公式来找到合适的权重剪枝:
这种剪枝技术能够有效地减少模型的计算量,同时保持模型的性能。
3. GPTQ 算法步骤