基于Python的自然语言处理系列(46):4-bit LLM 量化与 GPTQ

        

        在本篇文章中,我们将深入探讨如何使用 GPTQ (Generative Pre-trained Quantization) 进行4-bit大语言模型(LLM)的量化。在大规模语言模型训练和推理的背景下,模型的量化不仅能够大大降低计算成本,还能够提高推理速度,因此对构建高效的NLP模型有着极其重要的意义。

1. Optimal Brain Quantization

        在量化的过程中,我们首先面临的是层级压缩问题,可以通过以下优化目标进行描述:

2. 剪枝技术 (Pruning Technique)

        在剪枝过程中,我们希望通过以下公式来找到合适的权重剪枝:

        这种剪枝技术能够有效地减少模型的计算量,同时保持模型的性能。

3. GPTQ 算法步骤

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会飞的Anthony

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值