pytorch 指定GPU设备

使用os.environ["CUDA_VISIBLE_DEVICES"]

这种方法是通过环境变量限制可见的CUDA设备,从而在多个GPU的机器上只让PyTorch看到并使用指定的GPU。这种方式的好处是所有后续的CUDA调用都会使用这个GPU,并且代码中不需要显式地指定设备索引。

import os

# 设置只使用2号GPU
os.environ["CUDA_VISIBLE_DEVICES"] = '2'

import torch
import torch.nn as nn

# 检查PyTorch是否检测到GPU
if torch.cuda.is_available():
    print(f"Using GPU: {torch.cuda.get_device_name(0)}")  # 注意这里是0,因为只有一个可见的GPU
else:
    print("No GPU available, using CPU instead.")

# 定义模型
class YourModel(nn.Module):
    def __init__(self):
        super(YourModel, self).__init__()
        self.layer = nn.Linear(10, 1)
    
    def forward(self, x):
        return self.layer(x)

# 创建模型并移动到GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = YourModel().to(device)

# 示例数据和前向传播
input_data = torch.randn(5, 10).to(device)
output = model(input_data)
print(output)

直接指定设备索引

这种方法是在代码中直接指定要使用的设备索引,无需修改环境变量。这种方式更加显式,并且可以在同一脚本中使用多个不同的GPU。

import torch
import torch.nn as nn

# 检查设备是否可用并打印设备名称
if torch.cuda.is_available():
    device = torch.device("cuda:2")  # 直接指定设备索引
    print(f"Using GPU: {torch.cuda.get_device_name(2)}")
else:
    device = torch.device("cpu")
    print("No GPU available, using CPU instead.")

# 定义模型
class YourModel(nn.Module):
    def __init__(self):
        super(YourModel, self).__init__()
        self.layer = nn.Linear(10, 1)
    
    def forward(self, x):
        return self.layer(x)

# 创建模型并移动到指定的GPU
model = YourModel().to(device)

# 示例数据和前向传播
input_data = torch.randn(5, 10).to(device)
output = model(input_data)
print(output)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值