24、二叉树中和为某一值的路径
题目描述:
输入一颗二叉树的根节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径。路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径。(注意: 在返回值的list中,数组长度大的数组靠前)
思路:
递归,如果找到一条合适路径就存入list。
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
/**
public class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
*/
public class Solution {
ArrayList<ArrayList<Integer>> aList = new ArrayList<>();
ArrayList<Integer> al = new ArrayList<>();
public ArrayList<ArrayList<Integer>> FindPath(TreeNode root,int target) {
if(root==null){
return aList;
}
al.add(root.val);
target -= root.val;
if(target==0 && root.left==null && root.right==null)//找到到叶结点的一条路径
aList.add(new ArrayList<Integer>(al));//复制一份之后加入aList数组中
//因为在每一次的递归中,我们使用的是相同的aList引用,所以其实左右子树递归得到的结果我们不需要关心,
FindPath(root.left,target);
FindPath(root.right,target);
//这里把最后一个节点删除是因为在递归的过程中,无论加入一个节点到al数组中是否合适,递归回溯到这里是我们都还要判断另一个节点
al.remove(al.size()-1);
//对aList内容降序排列
Collections.sort(aList, new Comparator<ArrayList<Integer>>() {
@Override
public int compare(ArrayList<Integer> o1, ArrayList<Integer> o2) {
return o2.size()-o1.size();//降序,若升序则o1.size()-o2.size()
}
});
return aList;
}
}
注:在找到合适叶节点的时候,不是直接aList.add(al);
是因为这样是添加的引用地址,这样aList
里的所有元素就会共用一个引用地址,而al
是存放当前路径的数组,因此我们使用aList.add(new ArrayList<Integer>(al));
,把当前存放路径的数组复制一份添加进去。
非递归
import java.util.*;
/**
public class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
*/
public class Solution {
ArrayList<ArrayList<Integer>> paths = new ArrayList<>();
ArrayList<Integer> path = new ArrayList<>();
public ArrayList<ArrayList<Integer>> FindPath(TreeNode root,int target) {
Stack<TreeNode> stack = new Stack<TreeNode>();
while(root != null || !stack.isEmpty())
{
while(root != null)
{
path.add(root.val);
target -= root.val;
if (target == 0 && root.left == null && root.right == null){
paths.add(new ArrayList<Integer>(path));
}
stack.push(root);
root = root.left;
}
if(!stack.isEmpty())
{
root = stack.pop();
if (root.left != null && root.right != null){
while(path.get(path.size() - 1) != root.val){
target +=path.get(path.size() - 1);
path.remove(path.size() - 1);
}
}
root = root.right;
}
}
return paths;
}
}