题目描述(中等)
给你一个 m x n 的二元矩阵 matrix ,且所有值被初始化为 0 。请你设计一个算法,随机选取一个满足 matrix[i][j] == 0 的下标 (i, j) ,并将它的值变为 1 。所有满足 matrix[i][j] == 0 的下标 (i, j) 被选取的概率应当均等。
尽量最少调用内置的随机函数,并且优化时间和空间复杂度。
实现 Solution 类:
Solution(int m, int n) 使用二元矩阵的大小 m 和 n 初始化该对象
int[] flip() 返回一个满足 matrix[i][j] == 0 的随机下标 [i, j] ,并将其对应格子中的值变为 1
void reset() 将矩阵中所有的值重置为 0
示例:
输入
[“Solution”, “flip”, “flip”, “flip”, “reset”, “flip”]
[[3, 1], [], [], [], [], []]
输出
[null, [1, 0], [2, 0], [0, 0], null, [2, 0]]
解释
Solution solution = new Solution(3, 1);
solution.flip(); // 返回 [1, 0],此时返回 [0,0]、[1,0] 和 [2,0] 的概率应当相同
solution.flip(); // 返回 [2, 0],因为 [1,0] 已经返回过了,此时返回 [2,0] 和 [0,0] 的概率应当相同
solution.flip(); // 返回 [0, 0],根据前面已经返回过的下标,此时只能返回 [0,0]
solution.reset(); // 所有值都重置为 0 ,并可以再次选择下标返回
solution.flip(); // 返回 [2, 0],此时返回 [0,0]、[1,0] 和 [2,0] 的概率应当相同
提示:
1 <= m, n <= 10410^4104
每次调用flip 时,矩阵中至少存在一个值为 0 的格子。
最多调用 1000 次 flip 和 reset 方法。
思路
用m * n * 1的一维数组,表示m * n的二维数组
对于一维数组中下标i,对应于二维数组中[i/n,i%n]的位置
回到题目,每次随机在total中选择一个数,对其进行操作后,剩余可选数-1,即total–
难点在于怎么记录这一操作,以及怎么剔除出已选元素
选择用哈希表构建随机选中的数和仍为0的位置的映射,有点链表的感觉
对于选中的tmp,如果之前没被选过,则将tmp与total建立映射,total–,相当于对tmp进行换值为1的操作,且下次不会再随机到total。
如果之前选过,那这次选中的tmp相当于真实情况下选中tmp一直指向直到为0的位置。
举例来说:
对于1,2,3,4,5五个位置
第一次随机:1-5随机选中3,3之前没被选过,建立3到末尾5的映射,输出3,随机数范围-1;
第二次随机:1-4随机选中3,3之前选中过,根据映射关系找到他还没被选过的映射,也就是5,建立5到此刻末尾4的映射,输出5,随机数范围-1;
第三次随机:1-3随机选中3,3之前被选过,根据映射找到5,5也被选过,根据映射找到4,4没被选过,那么这次随机相当于选中了4,建立4到此刻末尾3的映射,输出4,随机数范围-1;
有一点链表的感觉,选中一个元素,直到他的链表尾才相当于本次真正随机选择的数,并建立新的链接
代码
class Solution {
public:
int a;
int b;
int total;
unordered_map<int,int> hash;
Solution(int m, int n) {
a = m;
b = n;
total = a * b;
}
vector<int> flip() {
int tmp = rand()%total;
while(hash.find(tmp)!=hash.end())
tmp = hash[tmp];
hash[tmp] = total-1;
total--;
return {tmp/b,tmp%b};
}
void reset() {
total = a * b;
hash.clear();
}
};
/**
* Your Solution object will be instantiated and called as such:
* Solution* obj = new Solution(m, n);
* vector<int> param_1 = obj->flip();
* obj->reset();
*/