自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

llm_way的博客

大模型探索,分享大模型相关实践

  • 博客(346)
  • 收藏
  • 关注

原创 LlamaIndex新手指南(2025):从0到生产环境,构建RAG应用的完整指南

通过从基础入门、开发环境搭建、数据处理加载、索引构建、查询生成到生产环境部署的完整流程,我们详细介绍了如何利用LlamaIndex构建从0到生产环境的RAG应用。实际应用中,开发者可根据具体业务需求和场景,灵活运用LlamaIndex功能工具,不断优化应用性能和用户体验,充分发挥RAG技术提升LLM应用能力的潜力。无论是企业内部知识管理、客户服务,还是智能问答系统、智能写作助手等领域,基于LlamaIndex的RAG应用都有广阔应用前景和发展空间。

2025-08-25 08:15:00 557

原创 深入探索高级RAG(检索增强生成)技术

RAG的世界在不断发展,新的技术和方法层出不穷。通过探索我们在本文中讨论的高级技术——从复杂的混合检索和重排序到利用专用向量数据库的力量——你可以构建比以往更准确、更高效、更强大的RAG系统。

2025-08-24 08:15:00 1396

原创 编程而非提示:DSPy 实战指南

DSPy 即声明式自改进 Python(Declarative Self-improving Python),能帮助开发者构建模块化人工智能应用。其核心理念是将大语言模型任务视为编程问题,而非手动提示过程。借助标准构建模块,开发者可创建从简单分类器到检索增强生成(RAG)系统,甚至智能代理等各类人工智能应用。

2025-08-23 08:15:00 702

原创 掌握 LLM 温度参数:从原理到实践的全方位指南

在LLM驱动的智能时代,温度参数就像一把精准的“创造力开关”,而理解并善用这把开关的人,将能更好地释放人工智能的潜力,让技术真正服务于多样化的需求场景。通过本文的指南,希望你已掌握调节这把开关的技巧,在LLM的世界中,既收获可靠的结果,也拥抱创意的惊喜。

2025-08-22 08:15:00 971

原创 保障AI代理免受提示注入攻击的设计模式

提示注入不仅仅是大语言模型的一个漏洞,更是一个有待被利用的设计缺陷。通过运用上述六种设计模式,我们能够从设计层面保障LLM代理的安全,同时又不会削弱它们的实用性。在未来的LLM代理开发中,将安全设计理念贯穿始终,不断优化和完善防御模式,才能让LLM代理在为我们提供便捷服务的同时,有效抵御各种潜在的安全威胁,推动大语言模型技术在安全可靠的环境中持续发展。

2025-08-21 08:15:00 489

原创 构建企业级AI助手:LLM应用规模化实践指南

构建企业级AI助手不仅仅是接入一个强大的LLM,还需要深思熟虑的架构设计、安全的集成、可扩展的工作流以及持续的改进。通过专注于上下文感知、检索增强生成、强大的工具支持和运维最佳实践,企业可以打造真正赋能团队的AI助手,带来实实在在的业务影响,而非仅仅是噱头。如果企业已准备好超越原型阶段,构建适合自身需求的AI解决方案,与专业的AI软件开发团队合作可以加速这一进程,并确保持久的成功。企业级AI助手的构建是一个持续演进的过程,随着技术的不断发展和企业需求的变化,需要不断优化和完善,才能真正成为企业发展的有力支撑

2025-08-20 08:15:00 550

原创 从幻觉到信任:LLM响应评估的实践与价值

原始的评估分数虽有价值,但真正的收益来自于对这些结果的分析和呈现,以此推动决策制定。Evaluation.Reporting类库能够生成完整的HTML报告,总结所有场景、指标,并突出显示不同运行之间的变化。这份报告不仅包含分数统计,还会展示每个指标的详细理由、失败案例分析和趋势图表,使技术团队和业务相关方都能快速理解质量状况。

2025-08-19 08:15:00 557

原创 RAG 实用指南:开发者必备的 25 种文本分块技巧

分块是 RAG 系统的隐形基础设施,它不耀眼却至关重要。通过本文的 25 种策略,让你的分块从"随意切割"升级为"智能拆分",让 LLM 在精准上下文的加持下,输出真正可靠的答案。

2025-08-18 08:15:00 705

原创 生成式AI狂热:我们是否正在将一切复杂化?

我并不是建议我们要遏制创新。生成式AI可能会彻底改变一些工作流程(客户支持、日常调度等),但我确实担心盲目信仰的问题。我们需要问自己:与现有方法相比,这真的能更好地解决问题吗,还是仅仅是“为了AI而AI”?在交易和加密货币领域,答案尚无定论。已经出现了一些概念验证,但就我所见,还没有任何一个能颠覆市场,或者在实盘交易中明显击败经验丰富的人类交易员。

2025-08-17 08:15:00 957

原创 GPT-5与GPT-4o全面对比:性能、场景与实际价值解析

通过多维度对比可以清晰地看到,GPT-5在核心性能指标上全面超越GPT-4o,尤其在编码开发、推理数学、多模态处理、事实准确性等专业领域实现了显著提升。其更高的任务通过率、更优的资源效率和更大的上下文窗口,使其在企业级应用和专业工作场景中展现出更高的实用价值。

2025-08-16 08:15:00 723

原创 GPT-5 深度解析:统一架构、全能升级与 AI 可靠性的全新里程碑

GPT-5的发布不仅是一次技术迭代,更代表着AI系统向更智能、更可靠、更实用方向发展的重要里程碑。其模块化统一架构展现了效率与能力的精妙平衡,全面提升的核心能力拓展了AI的应用边界,显著改善的事实性与安全性增强了用户信任,而灵活的产品部署策略则确保了技术价值的广泛实现。

2025-08-15 08:15:00 567

原创 OpenAI开源大模型GPT-OSS全面评测:技术突破与行业变革

GPT-OSS的发布标志着AI行业的关键转折,其技术创新与开源策略将产生深远影响。预计未来几周将出现大量社区微调模型、基准测试和应用集成,推动开源AI生态繁荣。

2025-08-14 08:15:00 865

原创 AI 智能体的三大支柱:上下文、认知与行动

AI智能体的时代已然来临。构建优秀智能体的关键,在于把握上下文、认知与行动的平衡与协同。以这三大支柱为框架,我们正在创造不仅能理解世界,更能主动改善世界的AI系统——它们将成为人类能力的延伸,在各行各业释放前所未有的价值,推动社会向更高效、更智能的未来迈进。

2025-08-13 08:15:00 681

原创 使用 FastAPI + FastMCP 进行 MCP 引导的实用指南

Model Context Protocol(MCP,模型上下文协议)作为一种标准化的交互框架,为服务器与客户端之间的动态信息获取提供了可靠解决方案。

2025-08-12 08:15:00 617

原创 LLM 记忆系统深度解析:从上下文窗口到多层架构的突破与演进

对于最复杂的应用程序,结合短期和长期记忆的架构至关重要。这是一种分层记忆形式,其中上下文窗口作为工作记忆,容纳即时对话和最关键的检索信息;向量数据库(RAG)作为长期记忆,提供庞大、可搜索且持久的知识存储;还有一个系统组件负责协调流程,决定哪些信息需要主动保存在工作记忆中,哪些可以被分页到长期记忆中,只在需要时才检索。

2025-08-11 08:15:00 736

原创 打破认知:高温度参数如何提升 LLM 结构化输出质量?

研究发现,在复杂结构化输出场景中,适当提高温度参数反而能提升输出的完整性和实用性。这一现象的本质是:LLM的结构化能力不仅依赖于确定性的概率选择,还需要一定的探索性来克服复杂任务中的局部最优陷阱。

2025-08-10 08:15:00 885

原创 优化小型语言模型的函数调用能力:数据质量、数量与实用策略

优化小型语言模型函数调用能力的实用策略可以归纳为三个核心方向:精准的数据筛选、科学的样本设计和持续的性能迭代,通过这一系列措施实现模型效率与准确率的最佳平衡。

2025-08-09 08:15:00 1634

原创 上下文工程(Context Engineering)—— 全面概述

本质上,上下文工程承认大型语言模型的效能不仅取决于其固有能力,更深受输入信息的质量、相关性和结构的影响。它是一个动态迭代的过程,超越静态提示,整合了管理信息流、记忆和工具利用的复杂技术。

2025-08-08 08:15:00 1235

原创 借助上下文工程优化任何AI代理框架

打造达到人类水平的代理,不能仅仅依赖臃肿的提示词和追逐模型升级。代理智能不仅仅关乎推理能力,更在于通过精心设计的上下文流程实现结构化认知。告别杂乱无章的提示词和临时拼凑的链,我们正迈入一个新的时代,在这个时代里,代理通过精心设计的认知架构进行推理、适应和进化。如果想要打造真正能够协作、解释、验证和扩展的代理,就必须重视上下文工程,而不只是简单地对其进行提示。上下文工程将成为未来AI代理技术发展的核心驱动力,引领着人工智能代理向更智能、更可靠、更高效的方向迈进。

2025-08-07 08:15:00 1037

原创 LLM 语境压缩中的整合、总结与提炼:差异、应用与实践策略

整合、总结与提炼作为 LLM 语境压缩的三大核心策略,各自在信息保留、压缩效率和认知需求上呈现出鲜明特点。在实际应用中,没有放之四海而皆准的最优策略,只有根据具体场景灵活选择和组合的合理方案。精确理解这三种策略的本质差异,掌握其适用条件和实施要点,对于设计高效的 LLM 语境管理系统至关重要。

2025-08-06 09:52:55 791

原创 7 款会“思考”再作答的 RAG 智能代理:重新定义 AI 交互逻辑

RAG 技术的演进史,本质上是 AI 从“信息检索者”向“决策辅助者”的进化史。这 7 种智能代理的共同特点,是突破了“输入-输出”的简单逻辑,引入了人类解决问题的核心要素——规划、推理、验证、记忆。

2025-08-05 08:15:00 664

原创 从单一大型语言模型到智能体人工智能:生成式人工智能演进的解读

我们回顾了批处理大型语言模型应用如何通过固定或链式提示流程处理数据管道;聊天应用如何随着记忆、检索(RAG)和工具调用的发展变得更具上下文感知和交互性;以及这些发展如何自然地引领了智能体人工智能的兴起——在这一阶段,大型语言模型能够推理、规划、调用工具,并与其他智能体协作完成任务。

2025-08-04 08:15:00 950

原创 如何评估大型语言模型(LLM)系统

要构建可靠且高性能的LLM应用,在开发工作流程中提前进行评估不仅有益,而且至关重要。通过从一开始就集成以评估为导向的方法,团队可以主动发现差距、改进实现,并确保尽早与用户期望保持一致。

2025-08-03 08:15:00 712

原创 6款免费的AI代理构建工具,打造你的个人智能代理

人工智能领域发展迅速,但这并不意味着它一定很昂贵。有了CrewAI、LangGraph、OpenAgents、Runner H等这些工具,你可以构建出努力工作、思维敏捷且能完成现实世界任务的代理——而且不会让你花费一分钱。

2025-08-02 08:15:00 953

原创 停止提示词优化,开始系统设计:5种切实有效的智能体AI模式

智能体设计并非要让模型变得更聪明,而是要设计出更好的系统。这些系统能够管理复杂性、在过程中适应,并且不会因第一个意外输入而崩溃。

2025-08-01 08:15:00 628

原创 测试不同的RAG技术以找到最佳方案

对广泛的RAG技术的探索表明,每种技术都有其优缺点。朴素RAG是一个很好的起点,因为它简单且设置快速,非常适合快速项目。另一方面,像HyDE、图RAG、递归检索等高级方法在需要更准确和详细的答案时表现出色,特别是对于复杂或特定的任务。通过测试这些方法,人们可以找出最适合自己需求的方法,无论优先考虑的是速度、精度还是处理棘手问题的能力。

2025-07-31 08:15:00 804

原创 从TDD到EDD:为何评估驱动开发是AI工程的未来

测试驱动开发给了我们大胆重构的信心,而评估驱动开发给了我们构建可靠、经济高效且可逐步改进的AI系统的工具。

2025-07-30 08:15:00 875

原创 一小时内构建基于Gemma与Bright Data的生产级RAG应用

RAG技术的价值不仅在于提升AI系统的可靠性,更在于降低了智能应用的开发门槛。现在,即便是中小企业或个人开发者,也能构建出媲美科技巨头的专业AI工具,应用场景涵盖客户支持、市场分析、学术研究等多个领域。

2025-07-29 08:15:00 802

原创 LLM记忆终极指南:从上下文窗口到高级智能体记忆系统

AI记忆技术的演进,本质上是让机器从"健忘的工具"成长为"有持续认知的伙伴"。这一旅程始于对上下文窗口限制的理解,经过缓冲、总结、检索等阶段,最终迈向能构建知识网络、主动调用记忆的智能体。

2025-07-28 08:15:00 1072

原创 大语言模型与AI智能体中的上下文工程(Context Engineering)

上下文工程处于LLM研究和系统设计的前沿,融合了信息检索、记忆增强学习和人机交互的思想。随着LLM的演进(如更大的上下文窗口或混合专家等新架构),上下文工程也将不断发展,助力构建能在长时范围内可靠推理的真正上下文感知AI系统。

2025-07-27 08:15:00 794

原创 OpenAI 多智能体研究框架:构建高效协作的AI代理系统

OpenAI的多智能体研究框架通过模块化设计和专业化代理协作,为复杂研究任务提供了高效解决方案。它不仅平衡了结果质量与资源消耗,还通过增强透明度和可追溯性,提高了AI系统的可靠性和可信度。

2025-07-26 08:15:00 703

原创 LangChain vs CrewAI vs Autogen:AI 代理框架选择实用指南

AI 代理并非万能灵药,但它们正在逐渐接近。通过适当的设置,代理框架可以承担以前需要人力完成的实际任务:研究、总结、分类、协调行动。但选择合适的框架至关重要。

2025-07-25 08:15:00 1088

原创 上下文工程实战指南:突破 LLM 性能瓶颈,规避常见风险

随着LLM技术的不断发展,上下文工程的重要性将愈发凸显。掌握这一技能,能够帮助我们更好地发挥LLM的潜力,构建出更加强大、高效、可靠的AI智能体,为各个领域带来更优质的服务和解决方案。

2025-07-24 08:15:00 907

原创 Kimi K2:适用于生产级AI代理的最佳开源大语言模型

Kimi K2凭借其独特的架构和先进的训练,在多智能体系统中发挥着核心作用,为生产级AI代理的应用提供了强大的支持。

2025-07-23 08:15:00 711

原创 使用LangGraph构建可投入生产的AI智能体

LangGraph简化了AI智能体的构建,使其超越有趣的演示,成为可靠的现实世界工具。通过将任务分解为小步骤(节点),用清晰的路径(边)连接它们,并跟踪信息(状态),LangGraph使复杂的工作流易于管理。我们的旅行规划助手示例展示了如何在实际应用中运用这些理念,并提供了代码、结果和清晰的工作流程图。

2025-07-22 08:15:00 740

原创 语境工程(Context Engineering)和提示工程(Prompt Engineering):AI时代的两大核心技术解析

提示工程和语境工程是同一枚硬币的两面,对于充分发挥AI系统的潜力都至关重要。提示工程是完成快速、一次性任务的首选,而语境工程对于构建稳健、可扩展的AI应用程序必不可少。通过掌握这两种技术,无论是写故事、编程序还是部署面向客户的聊天机器人,都能释放AI的全部潜力。从清晰的提示开始,然后随着需求的增长,逐步构建完善的语境工程体系。

2025-07-21 08:15:00 1007

原创 Dynamic Chunking(H-Net):告别分词器的AI文本处理革新

H-Net与动态分块技术的出现,不是终点而是新起点。它让我们看到,当AI不再被人工规则限制,其理解语言的潜力将如何释放。在这条通往真正智能的道路上,每一次对固有假设的挑战,都在推动人工智能向人类的认知方式靠近——或许有一天,机器处理文本时,也能像我们那样,在字符的流动中自然把握意义的脉络。

2025-07-20 08:15:00 825

原创 从Ollama到vLLM:为高吞吐量LLM服务寻找稳定性

Ollama的便捷性适合快速验证想法,但vLLM的稳定性才是生产环境的基石。对于需要高吞吐量LLM服务的团队来说,放弃一点部署便捷性,换取可预测的性能和可控的成本,无疑是笔划算的交易。当然,技术选型没有银弹——如果你的需求是快速切换多种模型做实验,Ollama依然值得考虑;但如果追求的是GraphRAG这类重度应用的长期稳定,vLLM的陡峭学习曲线终将转化为实实在在的收益。

2025-07-19 08:15:00 976

原创 你需要了解的 AI 智能体设计模式

这四种设计模式——反思模式、工具使用模式、规划模式和多智能体协作模式——是构建 AI 智能体的基础,它们不仅能让智能体变得聪明,还能使其具备适应性、高效性,并有能力应对现实世界的复杂问题。

2025-07-18 14:45:47 984

原创 Agentic Memory:解析AI智能体的多种记忆类型

智能体记忆是AI智能体实现智能化、个性化和持续进化的核心支撑。情景记忆让智能体“记得过去”,能够从历史交互中学习;语义记忆让智能体“懂得知识”,能够提供准确全面的答案;程序记忆让智能体“知道规矩”,能够安全合规地运作;短期记忆让智能体“专注当下”,能够动态处理即时任务。

2025-07-18 14:44:29 737

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除