提示工程(Prompt Engineering)最全综述:本质、技术、最佳实践

提示工程(prompt engineering),简而言之,是构建和优化输入提示以引导LLMs生成准确且富有洞察力的输出的艺术和科学。在LLMs的世界里,一个精心设计的提示就如同一位经验丰富的向导,能够引领模型穿越复杂的信息海洋,找到用户心中的答案。

一、理解提示与提示工程(prompt engineering)

(一)提示的本质

提示是我们输入给大语言模型以获取期望响应的信息。它的形式丰富多样,可以是一个简单的问题、一段陈述、详细的指令,甚至可以是文本与图像等其他模态的组合。例如,在向大语言模型询问历史事件时,我们输入的关于该事件的相关描述或问题就是提示(掌握Prompt Engineering(提示工程):解锁大型语言模型的无限潜能)。提示的质量直接影响着模型输出的准确性和有效性,一个精心设计的提示能够激发模型挖掘出其训练数据中的深度知识,从而给出令人满意的回答。

(二)提示工程的定义

提示工程(prompt engineering)则是一门精心雕琢提示的艺术与科学。它不仅仅是简单地构造输入文本,更是涉及到对模型行为的深入理解,以及对各种影响因素的综合考量。通过不断地实验、优化,提示工程师能够设计出最适合特定任务和场景的提示,引导大语言模型生成精准、富有洞察力的输出。这是一个迭代的过程,需要不断地调整和改进提示,以适应不同的需求和模型特性。

二、控制大语言模型输出:配置是关键

(一)输出长度

大语言模型的输出长度是一个重要的配置参数,它决定了模型将生成的最大令牌数量。令牌是模型处理文本的基本单位,可以是单词、标点符号等。当我们需要更详细、全面的回答时,可能会希望增加输出长度,但这需要更多的计算资源。因为生成更多令牌意味着模型需要进行更复杂的计算,这不仅会导致更高的能源消耗,还可能使响应时间变长,并且增加使用成本。例如,在生成一篇长篇文章时,若设置较长的输出长度,模型将花费更多时间和资源来构建完整的内容。相反,如果我们只需要一个简短的答案,如查询一个事实性信息时,适当限制输出长度可以提高效率并降低成本。

(二)温度

温度参数控制着大语言模型输出的随机性。较低的温度值(如 0.1)会使模型的响应更具可预测性和确定性,它倾向于选择概率最高的令牌,从而生成较为保守和常规的回答。这种情况下,模型的输出更稳定,适合于需要准确、一致性答案的场景,如查询科学公式或定义等。而较高的温度(如 0.9)则引入了更多的随机性,允许模型探索更多样化的可能性,从而产生更具创造性和独特性的结果。在创意写作、头脑风暴等任务中,较高的温度能够激发模型生成新颖的想法和独特的表达方式。例如,在创作一篇小说时,适当提高温度可以让模型生成更富有想象力的情节和生动的描写。

(三)Top - K 采样

Top - K 采样基于模型为下一个令牌生成的概率分布进行操作。它限制模型仅从概率最高的 K 个令牌中选择下一个令牌。例如,当 K = 5 时,模型会在生成每个新令牌时,仅从概率排名前五的候选令牌中随机选择。这种方法在一定程度上平衡了确定性和随机性,既能保证模型考虑到最有可能的选项,又给予了一定的变化空间。在实际应用中,根据任务的需求调整 K 的值可以影响模型输出的多样性和准确性。如果 K 值过小,可能会导致输出过于局限;而 K 值过大,则可能使模型的选择过于分散,降低输出的质量。

### Prompt Engineering 的实际应用案例与实践项目 #### 1. 数学问题求解中的 Prompt 设计 在设计 Prompt 工程时,可以通过提供具体的例子帮助模型理解任务需求。例如,在解决数学问题时,可以按照运算顺序逐步引导模型完成任务[^2]。这种做法不仅提高了模型的理解能力,还增强了其输出的准确性。 #### 2. ChatGPT 使用中的高级技巧 通过精心设计 Prompt,可以让大型语言模型(LLM)的表现更加强大。例如,在询问 ChatGPT 如何优化 Prompt 或者如何处理复杂的多步推理任务时,可以引入具体的应用场景或者背景信息[^3]。这种方法能够显著提升 LLM 对复杂任务的响应质量。 #### 3. 贝叶斯推断的实际应用 当涉及概率计算或复杂推理时,Prompt 可以嵌入特定的逻辑框架,如贝叶斯定理。这有助于模型生成更为精确的结果。例如,要求模型基于过去七天无降雨记录预测明天是否会下雨,可以在 Prompt 中加入条件概率的相关提示[^5]。 #### 4. 开源项目的结构化设计 对于希望构建自己的 Prompt 工程工具的人来说,可以从开源项目中汲取灵感。这些项目通常具有良好的目录结构,其中 `src` 文件夹存储核心代码,`examples` 展示使用方式,而 `config` 则允许用户自定义参数设置[^4]。这样的架构非常适合初学者学习并快速上手。 以下是展示上述概念的一个简单 Python 示例: ```python def calculate_bayesian_probability(prior, likelihood, marginal): """ Calculate the posterior probability using Bayes' theorem. :param prior: Prior probability of hypothesis H being true (P(H)) :param likelihood: Likelihood of evidence E given that H is true (P(E|H)) :param marginal: Marginal probability of observing the evidence E (P(E)) :return: Posterior probability P(H|E) """ return (prior * likelihood) / marginal # Example usage based on weather prediction scenario described earlier prior_no_rain = 0.9 # Probability it didn't rain last week likelihood_tomorrow = 0.1 # Conditional probability tomorrow will be rainy after a dry spell marginal_weather = 0.8 # Overall chance any day could have been wet or dry recently posterior = calculate_bayesian_probability(prior_no_rain, likelihood_tomorrow, marginal_weather) print(f"The calculated Bayesian probability for rainfall tomorrow is {posterior:.2f}.") ``` 此脚本实现了基本版的贝叶斯公式,并将其应用于天气预报情境之中作为演示用途之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值