当谷歌首次宣布Gemini Pro拥有100万token的上下文窗口时,许多人宣称这是检索增强生成(RAG)技术的终结。有人形象地比喻:“这就像说因为现在内存(RAM)足够大,所以我们不再需要硬盘了。” 对此观点,笔者深表赞同。大型语言模型(LLMs)本质上是无状态的,即便具备超大上下文窗口,若智能体需要在多次交互、任务执行和不同环境中维持并检索知识,仍离不开记忆系统。这正是“智能体记忆”(Agentic Memory)概念的核心价值所在。
智能体记忆大致可分为两大类别:长期记忆与短期记忆。每类记忆又包含若干细分类型,它们共同构成了AI智能体的“认知体系”,使其能够像人类一样积累经验、运用知识、执行任务。
长期记忆:智能体的“知识库”与“履历表”
长期记忆是智能体储存持久信息的核心,它确保智能体能够从过去的经历中学习、沉淀知识,并在未来的交互中灵活调用。长期记忆主要包括情景记忆、语义记忆和程序记忆三种类型。
情景记忆:智能体的“个人日记”
情景记忆可类比为智能体的“个人日记”或“日程表”,它记录了智能体在特定情境中的事件、交互过程以及自身行为。这种记忆不仅包含事件本身,还涵盖了丰富的上下文细节,使其能够清晰还原“发生了什么、为何发生、涉及谁、何时发生以及使用了哪些资源”。
以一个代码辅助智能体的交互记录为例:
“2025年7月10日星期四上午10:30(印度标准时间),在‘my-web-app’Git仓库的‘feature/user-auth’分支中,开发者‘爱丽丝’遇到了来自app/database.py文件的错误回溯,具体为‘OperationalError: 无法连接到服务器’。当前激活的Python环境为venv,requirements.txt文件显示已安装psycopg2。智能体建议检查config.py中的数据库凭证并