解决ValueError: Tensor("Variable:0" dtype=float32_ref) must be from the same graph as Tensor("Reshape:

本文解决在Django框架中调用CNN模型时出现的ValueError错误,通过创建并使用同一计算图确保模型调用成功。

#解决django中调用CNN模型出现ValueError: Tensor(“Variable:0” dtype=float32_ref) must be from the same graph as Tensor(“Reshape:0”, shape=(?, 2 8, 28, 1), dtype=float32)的问题

在同一个.py文件中可以实现,不会报错,在外部的.py文件中调用预测的模型代码报错。

你好! 这是我第一次写博客,原因是最近在学django,里面发文使用了markdown编辑器,正好,在这里练练手,熟悉一下语法,顺便记录一下最近在做物种识别系统遇到的问题,感谢各位大量指教。

##开发工具及版本:pycharm2019.3专业版+django2.0+python3.7

1.首先是在同一个py文件中直接调用,代码和结果如下:

cnn.py:

//预测代码
import numpy as np
import tensorflow as tf
import cv2
class deeper_model:  
    x = tf.placeholder(tf.float32, [None, 784]) 
    # 创建神经网络中间层
    W = tf.Variable(tf.zeros([784, 10]))  #定义权重
    b = tf.Variable(tf.zeros([10])) #定义偏置

    #权重函数,用于初始化
    def weight_variable(self, shape):
        initial = tf.truncated_normal(shape, stddev=0.1) #标准差 stddev用于设置正态分布被截断前的标准差,设置为0.1后,训练精度就达到达到 99.2% 以上
        return tf.Variable(initial)

    #偏置,用于初始化
    def bias_variable(self, shape):
        initial = tf.constant(0.1, shape=shape) #创建常量initial,可设定形状。
        return tf.Variable(initial)

    #卷积操作,步长为1,大小为1*1
    def conv2d(self, x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')#前后必须为1

    #池化操作 tf.nn.max_pool()和tf.nn.avg_pool()
    def max_pool_2x2(self, x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

    # 槽函数--开始识别
    def startRecognize(self,new_img):
        # 读取图片
        or_img = cv2.imdecode(np.fromfile(new_img, dtype=np.uint8), 0)  # 解决中文路径问题
        img = cv2.resize(or_img, (28, 28))
        # print(img.shape)
        one_map = img.flatten()  # 将矩阵拉伸成一维的数组。
        tva = [(255 - x) * 1.0 / 255.0 for x in one_map]  # 将像素正常化为0和1

        # 1.y=relu(wx+b) 第一次卷积池化
        x_image = tf.reshape(self.x, [-1, 28, 28, 1])  # tf.reshape():解决输入图像的维数不符合的情况,-1表示根据实际情况定
        W_conv1 = self.weight_variable([5, 5, 1, 32])  # 卷积核5*5,通道数为1,对应输出32张图
        b_conv1 = self.bias_variable([32])

        h_conv1 = tf.nn.relu(self.conv2d(x_image, W_conv1) + b_conv1)  # 图片变为:(28-1)/1+1=28*28

        h_pool1 = self.max_pool_2x2(h_conv1)  # 池化后变为28/2=14*14

        # 2.y=relu(wx+b) 第二次卷积池化
        W_conv2 = self.weight_variable([5, 5, 32, 64])  # 卷积核5*5,通道数为32,对应输出64
        b_conv2 = self.bias_variable([64])

        h_conv2 = tf.nn.relu(self.conv2d(h_pool1, W_conv2) + b_conv2)  # 图片变为(14-1)/1+1=14*14
        h_pool2 = self.max_pool_2x2(h_conv2)  # 池化后变为14/2=7*7
        """经过两次卷积和池化操作后,图片大小变为7*7,共64个卷积核"""

        # 3.全连接层
        W_fc1 = self.weight_variable([7 * 7 * 64, 1024])  # 加入1024个神经元
        b_fc1 = self.bias_variable([1024])

        # 把刚才池化后输出的张量reshape成一个一维向量
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

        # 4.dropout防止过拟合的方法
        keep_prob = tf.placeholder(tf.float32)
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

        # 4.类别预测与输出
        W_fc2 = self.weight_variable([1024, 10])
        b_fc2 = self.bias_variable([10])

        # 应用softmax实现分类
        y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

        # 在 2017年3月2号以后;用 tf.global_variables_initializer() 替代 tf.initialize_all_variables()
        init_op = tf.global_variables_initializer()  # 变量初始化

        saver = tf.train.Saver()  # 实例化对象,保存所有的checkpoint 文件
        module_file = tf.train.latest_checkpoint('E:\pythonpackage\PyQt_model\model.ckpt')
        with tf.Session() as sess:
            sess.run(init_op)
            if module_file is not None:
                # 重载模型的图及权重参数
                saver.restore(sess, module_file)  # 这里使用了之前保存的模型参数

            prediction = tf.argmax(y_conv, 1)
            predint = prediction.eval(feed_dict={self.x: [tva], keep_prob: 1.0}, session=sess)

            print('recognize result:')
            print(predint[0])

        return predint[0]

if __name__ == '__main__':
    cnn_model = deeper_model()  # 实例化
    new_img='E:\\桌面\\5.jpg'
    reslut = cnn_model.startRecognize(new_img)  # 调用模型,输出识别

结果:
在这里插入图片描述

需要说明的几点:

  1. 代码用途: 我是先尝试了一下手写数字的图片识别,模型已经训练好了,前面的卷积和池化的结构可以自己调整,我已经封装成函数了,我的模型路径是在:E:\pythonpackage\PyQt_model\model.ckpt。
  2. 模型加载过程中只能加载一次,重复加载会报错,因为前端图片上传不止一次,因此这一行判断语句不能少:
module_file = tf.train.latest_checkpoint('E:\pythonpackage\PyQt_model\model.ckpt')
if module_file is not None:  
     saver.restore(sess, module_file)  

2.在外部的.py文件中调用预测的模型代码报错ValueError: Tensor(“Variable:0” dtype=float32_ref) must be from the same graph as Tensor。

在这里插入图片描述在这里插入图片描述

在另一个文件中调用预测的函数

views.py

from django.contrib.auth.models import User
from django.shortcuts import render
from CNNmodel.cnn import deeper_model
from account.models import UserInfo
from deeplearn.models import speciesRecognition
import tensorflow as tf
tf.reset_default_graph()

def pic_upload(request):
    """上传图片"""
    user = User.objects.get(username=request.user.username)
    userinfo = UserInfo.objects.get(user=user)
    if request.method == 'POST':
        new_img = speciesRecognition(data_photo=request.FILES.get('img'))
        new_img.save()

        new_img = new_img.data_photo
        print("图片地址:",new_img)

        cnn_model = deeper_model() #实例化
        cnn_model.startRecognize(new_img)  #调用模型,输出识别结果
       
    return render(request, 'deeplearn/pic_upload.html', {"userinfo_all": userinfo})

说明:

  1. 上面的文件是django的views.py视图函数文件,调用模型时报错。

解决方法

问题出在在cnn.py预测文件中,没有创建计算图,使用的默认的计算图。外部调用发现不在同一个计算图里面。

在代码中创建计算图,统一在同一个计算图中。
我是这样做的:

import numpy as np
import tensorflow as tf
import cv2

graph = tf.Graph()  #定义计算图
# 写深度学习的代码
class deeper_model:
    with graph.as_default(): #在这里加一个
        # 定义占位符
        x = tf.placeholder(tf.float32, [None, 784])  # 保存的数据类型,保存数据的结构,比如要保存一个1×2的矩阵,则struct=[1,2]

        # 创建神经网络中间层
        W = tf.Variable(tf.zeros([784, 10]))  # 定义权重
        b = tf.Variable(tf.zeros([10]))  # 定义偏置

        # y=x*w+b 10分类

    # 权重函数,用于初始化
    def weight_variable(self, shape):
        initial = tf.truncated_normal(shape, stddev=0.1)  # 标准差 stddev用于设置正态分布被截断前的标准差,设置为0.1后,训练精度就达到达到 99.2% 以上
        return tf.Variable(initial)

    # 偏置,用于初始化
    def bias_variable(self, shape):
        initial = tf.constant(0.1, shape=shape)  # 创建常量initial,可设定形状。
        return tf.Variable(initial)

    # 卷积操作,步长为1,大小为1*1
    def conv2d(self, x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')  # 前后必须为1

    # 池化操作 tf.nn.max_pool()和tf.nn.avg_pool()
    def max_pool_2x2(self, x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

    # 开始识别
    def startRecognize(self, new_img):
        with graph.as_default(): #在这里加第2个
            # 读取图片
            or_img = cv2.imdecode(np.fromfile(new_img, dtype=np.uint8), 0)  # 解决中文路径问题
            img = cv2.resize(or_img, (28, 28))
            # print(img.shape)
            one_map = img.flatten()  # 将矩阵拉伸成一维的数组。
            tva = [(255 - x) * 1.0 / 255.0 for x in one_map]  # 将像素正常化为0和1

            # 1.y=relu(wx+b) 第一次卷积池化
            x_image = tf.reshape(self.x, [-1, 28, 28, 1])  # tf.reshape():解决输入图像的维数不符合的情况,-1表示根据实际情况定
            W_conv1 = self.weight_variable([5, 5, 1, 32])  # 卷积核5*5,通道数为1,对应输出32张图
            b_conv1 = self.bias_variable([32])

            h_conv1 = tf.nn.relu(self.conv2d(x_image, W_conv1) + b_conv1)  # 图片变为:(28-1)/1+1=28*28
            h_pool1 = self.max_pool_2x2(h_conv1)  # 池化后变为28/2=14*14
            # 2.y=relu(wx+b) 第二次卷积池化
            W_conv2 = self.weight_variable([5, 5, 32, 64])  # 卷积核5*5,通道数为32,对应输出64
            b_conv2 = self.bias_variable([64])

            h_conv2 = tf.nn.relu(self.conv2d(h_pool1, W_conv2) + b_conv2)  # 图片变为(14-1)/1+1=14*14
            h_pool2 = self.max_pool_2x2(h_conv2)  # 池化后变为14/2=7*7
            """经过两次卷积和池化操作后,图片大小变为7*7,共64个卷积核"""

            # 3.全连接层
            W_fc1 = self.weight_variable([7 * 7 * 64, 1024])  # 加入1024个神经元
            b_fc1 = self.bias_variable([1024])

            # 把刚才池化后输出的张量reshape成一个一维向量
            h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
            h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

            # 4.dropout防止过拟合的方法
            keep_prob = tf.placeholder(tf.float32)
            h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

            # 4.类别预测与输出
            W_fc2 = self.weight_variable([1024, 10])
            b_fc2 = self.bias_variable([10])
            
            # 应用softmax实现分类
            y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

            # 在 2017年3月2号以后;用 tf.global_variables_initializer() 替代 tf.initialize_all_variables()
            init_op = tf.global_variables_initializer()  # 变量初始化

            saver = tf.train.Saver()  # 实例化对象,保存所有的checkpoint 文件
            module_file = tf.train.latest_checkpoint('E:\pythonpackage\PyQt_model\model.ckpt')
            with tf.Session() as sess:
                sess.run(init_op)
                if module_file is not None:
                    # 重载模型的图及权重参数
                    saver.restore(sess, module_file)  # 这里使用了之前保存的模型参数

                prediction = tf.argmax(y_conv, 1)
                predint = prediction.eval(feed_dict={self.x: [tva], keep_prob: 1.0}, session=sess)

                print('recognize result:')
                print(predint[0])

            return predint[0]

if __name__ == '__main__':
     cnn_model = deeper_model()  # 实例化
     new_img='E:\\桌面\\3.jpg'
     reslut = cnn_model.startRecognize(new_img)  # 调用模型,输出识别结果
#     print("结果:", reslut)

###加入后测试cnn,py1文件,发现没有问题,直接出结果:
在这里插入图片描述

外部文件中调用,问题也解决了。不再报错ValueError: Tensor(“Variable:0” dtype=float32_ref) must be from the same graph as Tensor(“Reshape:0”, shape=(?, 2 8, 28, 1), dtype=float32)

在这里插入图片描述

搞定。

关于计算图的理解,参考这篇博文:
[https://www.cnblogs.com/studylyn/p/9105818.html]

<think>我们正在解决一个TensorFlow相关的错误:InvalidArgumentError,需要为名为'Placeholder_2'的占位符张量提供float类型的值。错误通常发生在尝试运行一个计算图,其中一个占位符(placeholder)没有接收到预期的数据。根据引用[^1]的内容,我们还可以注意到TensorFlow不允许将张量当作布尔值使用(比如在条件判断中直接使用张量),但这可能不是当前问题的直接原因,因为错误信息明确提到了占位符的数据类型问题。步骤分析:1.错误信息:InvalidArgumentError:需要为placeholdertensor'Placeholder_2'提供float类型的值。这表示我们在运行会话(session),没有为名为'Placeholder_2'的占位符提供值,或者提供的值类型不正确(应该是float类型)。2.占位符(Placeholder)在TensorFlow中用于表示将由运行程序提供数据的节点。定义占位符需要指定数据类型(dtype),这里要求的是float类型。3.出现此错误的常见原因:a)忘记在运行会话(调用sess.run())通过feed_dict参数为该占位符提供数据。b)虽然提供了数据,但数据的数据类型与占位符定义的数据类型不匹配(例如,占位符是float32,而提供的是整数)。c)占位符的名称拼写错误(注意TensorFlow中名称是唯一的),导致feed_dict中的键与图中占位符的名称不匹配。4.解决方案:a)确保在运行计算图,为所有占位符(尤其是名为'Placeholder_2'的占位符)提供数据。b)检查占位符定义的数据类型,并确保通过feed_dict提供的数据类型与之匹配(例如,如果占位符是tf.float32,则提供的值也应该是float32类型)。c)检查占位符的实际名称,确保没有拼写错误。可以通过打印占位符的名称来确认。5.示例代码:假设我们的计算图中有如下占位符:```pythonimporttensorflowastf#定义占位符,指定数据类型为float32x=tf.placeholder(tf.float32,shape=[None,2],name='Placeholder_1')y=tf.placeholder(tf.float32,shape=[None,1],name='Placeholder_2')#注意:这里我们命名了一个占位符为'Placeholder_2'#...其他计算...#在运行会话,必须为y(即名为'Placeholder_2'的占位符)提供数据withtf.Session()assess:#假设我们有一个输入数据input_x和input_y#注意:input_y必须是float32类型,且形状为[N,1],其中N是样本数result=sess.run(...,feed_dict={x:input_x,y:input_y})#这里一定要提供y的数据```如果我们忘记提供y的数据,比如只提供了x:```pythonresult=sess.run(...,feed_dict={x:input_x})#会抛出错误,因为y没有提供```或者提供的数据类型不对,比如将整数数组传递给了期望浮点数的占位符:```python#假设input_y是整数数组,但占位符y要求float32#应该将input_y转换为浮点数input_y=np.array(input_y,dtype=np.float32)```6.调试建议:-可以通过以下方式检查计算图中所有占位符的名称和数据类型:```python#在会话之前,先打印图中的所有操作graph=tf.get_default_graph()operations=graph.get_operations()foropinoperations:#如果操作是占位符,则打印其名称和数据类型ifop.type=="Placeholder":print(op.name,op.outputs[0].dtype)```-或者,如果你知道占位符的名称,也可以直接通过名称获取张量:```python#通过名称获取张量,注意张量的全名是操作名加上输出索引,通常为操作名:0try:placeholder_2=graph.get_tensor_by_name('Placeholder_2:0')print(placeholder_2.dtype)#应该输出float32exceptKeyError:print("占位符'Placeholder_2'未找到")```7.注意事项:-在TensorFlow2.x中,占位符的概念已经被移除,取而代之的是使用tf.function和具体的输入函数。如果你使用的是TensorFlow2.x,那么可能是使用了兼容模式(tf.compat.v1)的占位符。请确认你的TensorFlow版本。根据上述分析,请检查你的代码,确保在运行会话为所有占位符提供了正确数据类型的数据,并注意占位符的名称。如果问题仍然存在,请提供相关代码片段以便进一步分析。相关问题:1.TensorFlow中占位符(placeholder)的主要用途是什么?2.在TensorFlow2.x中如何替代占位符?3.如何检查TensorFlow计算图中所有的操作和张量?4.在feed_dict中,如何确保数据形状与占位符的形状兼容?</think> ### 解决 `InvalidArgumentError: Placeholder_2` 类型错误 当出现 **`InvalidArgumentError: placeholder tensor 'Placeholder_2' dtype float`** 错误,表明在 TensorFlow 会话运行未提供或错误地提供了名为 `Placeholder_2` 的浮点型占位符张量所需的数据。以下是系统级解决方案: --- ### 核心修复步骤 #### 1. **检查占位符定义** 确保占位符的数据类型定义为 `tf.float32`: ```python # 正确定义示例 placeholder_2 = tf.placeholder(tf.float32, shape=[None, input_size], name='Placeholder_2') ``` - ⚠️ 如果使用 `tf.placeholder(dtype=tf.float16)` 或其他非 `float32` 类型,需调整输入数据类型或占位符定义[^1]。 #### 2. **验证会话中的数据输入** 在 `sess.run()` 中确保通过 `feed_dict` 正确提供数据: ```python # 正确的 feed_dict 使用 with tf.Session() as sess: # 输入的 input_data 必须是 float32 类型 sess.run(output, feed_dict={placeholder_2: input_data}) ``` - **关键要求**:`input_data` 必须是 **NumPy 数组** 或 **Python 列表**,且元素类型为 `float32`(不是整数或字符串)。 #### 3. **强制数据类型转换** 如果输入数据不是 `float32`,需显式转换: ```python # 将输入数据转换为 float32 input_data = np.array(input_data, dtype=np.float32) ``` --- ### 调试技巧 1. **打印占位符信息**: ```python print("Placeholder_2 数据类型:", placeholder_2.dtype) # 应显示 float32 print("输入数据类型:", input_data.dtype) # 应显示 float32 ``` 2. **TensorFlow 2.x 兼容处理**(若使用 TF2): ```python # 在 TF2 中禁用 eager execution tf.compat.v1.disable_eager_execution() ``` --- ### 常见错误场景 | 场景 | 错误原因 | 修复方案 | |---------------------------|------------------------------|------------------------------| | 输入整数数据 | `int32` vs `float32` | 用 `input_data.astype(np.float32)` 转换 | | 使用张量而非实际值 | 尝试用 `tf.Tensor` 作为输入 | 改用 NumPy 数组或 Python 列表 | | 占位符名称拼写错误 | `Placeholder_2` vs `placehoder_2` | 检查计算图中张量的准确名称 | --- ### 代码修复示例 ```python import tensorflow as tf import numpy as np # 正确定义占位符 placeholder_2 = tf.compat.v1.placeholder(tf.float32, [None, 10], name='Placeholder_2') # 模拟输入数据 (整数 → 需转换) input_data = np.arange(100).reshape(10, 10) # int64 类型 → 会报错! input_data = input_data.astype(np.float32) # 转换为 float32 with tf.compat.v1.Session() as sess: # 显式提供浮点数据 sess.run(tf.global_variables_initializer()) result = sess.run(placeholder_2, feed_dict={placeholder_2: input_data}) ``` --- ### 根本原因总结 此错误是由于 TensorFlow 的静态图特性:占位符(`placeholder`)在构图阶段仅声明数据类型和形状,实际数据需在运行通过 `feed_dict` 以匹配的浮点格式注入。违反此约束会触发 `InvalidArgumentError`。通过确保**定义、输入、类型三者的严格一致性**即可解决[^1]。 --- ### 相关问题 1. 如何处理 TensorFlow 中的 `ValueError: setting an array element with a sequence`? 2. 在 TensorFlow 2.x 中如何替代 `tf.placeholder`? 3. 为什么 `feed_dict` 会导致性能下降?如何优化数据输入? 4. 如何动态检查 TensorFlow 计算图中所有占位符的数据类型? [^1]: TensorFlow 要求显式类型匹配,避免隐式转换错误。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值