
论文复现
文章平均质量分 94
小O的算法实验室
代码获取公众号:小O的算法实验室
分享算法与应用
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
2024年SEVC SCI2区,一致性虚拟领航者跟踪群集算法GDRRT*-PSO+多无人机路径规划,深度解析+性能实测
随着无人机技术的快速发展及其卓越的运动和机动性能,无人机在社会和军事等诸多领域得到了广泛应用。多无人机协同作业,能够显著提升任务执行的效率和速度,因此成为当前研究的热点。无人机已在娱乐、交通、物流、社会治理以及军事侦察、跟踪和打击等多个场景中发挥着重要作用,推动了群体智能系统的研究进步。本文提出了一种创新无人机群体拓扑结构,将一致性虚拟领航者跟踪群集算法(CBVLTSA)与基于目标距离快速扩展随机树-粒子群优化算法(GDRRT*-PSO)相结合,实现了高效的队形控制与路径规划。原创 2025-07-31 15:42:16 · 488 阅读 · 0 评论 -
2025年ESWA SCI1区TOP,强化学习多目标灰狼算法MOGWO-RL+分布式混合流水车间调度,深度解析+性能实测
本文针对大规模个性化制造(MPM)中的调度问题,提出了一种新的解决方案。MPM能够在确保大规模生产的前提下,实现个性化定制,但由于制造任务类型和数量的快速变化,调度难度大大增加。为此,本文提出了分布式混合流车间调度问题(DHFSP-OMTA),通过将异质客户订单分解为标准和个性化生产任务,并将其分配到不同工厂来应对这一挑战。为了解决MPM中的调度问题,本文构建了一个混合整数线性规划模型,旨在同时最小化完工时间和总能耗。原创 2025-07-30 11:47:30 · 596 阅读 · 0 评论 -
2025年EAAI SCI1区TOP,自学习人工蜂群算法EABC+多目标路径规划,深度解析+性能实测
近年来,路径规划一直是移动机器人领域最受关注的问题之一。本文探讨了一个多目标路径规划问题,重点在于最小化路径长度和最大化路径安全性。基于该问题的特点,建立了数学模型,并提出了一种增强人工蜂群算法(EABC),设计了一种新的混合初始化策略,用于生成高质量的初始种群。在雇佣蜂阶段,除了交叉和变异算子外,还开发了两个面向目标的进化算子。在 旁观蜂阶段,分别对非支配个体和支配个体应用了两种自学习优化机制。基于协作的优化机制旨在提高非支配个体的质量。支配引导优化机制则引导支配个体向非支配个体学习。原创 2025-07-29 14:39:27 · 519 阅读 · 0 评论 -
2025年SEVC SCI2区,自适应Q学习模因算法Q-SAMA+多AGV调度问题,深度解析+性能实测
本文解决了在实际生产车间中调度多个自动引导车(AGV)的问题,旨在最小化运输成本。为了解决这个问题,本文提出了一种自适应Q学习模因算法(Q-SAMA),采用改进的最近邻任务划分启发式方法生成优质解。此外,集成了Q学习来选择合适的邻域操作算子,从而增强算法的探索能力。为了防止算法陷入局部最优,提出了重启策略。为了使Q-SAMA适应搜索过程中的不同阶段,不再使用传统的交叉和变异概率,而是根据种群的集中程度和个体适应度之间的稀疏关系自适应地获得概率。原创 2025-07-28 16:18:33 · 383 阅读 · 0 评论 -
2025年AMM SCI2区,混合粒子群-启发式算法与组合Benders分割算法+野火灾害最大疏散规划,深度解析+性能实测
自然灾害,如洪水和火灾,每年都对世界各地的多个地区造成影响。在灾害管理和规划中,人员疏散是最为关键的环节之一。因此,本研究提出了一种应急疏散的数学模型,考虑了将人员转移至避难所的各种约束条件,包括道路封堵、车辆燃料和乘客容量等,该模型被称为最大化公交疏散规划模型。考虑到该问题具有 NP-hard 的复杂度,本文采用混合粒子群-启发式算法来求解该非线性模型,对该模型进行线性化并通过组合Benders切割法,采用三种不同版本进行求解。原创 2025-07-27 10:19:44 · 858 阅读 · 0 评论 -
2025年SEVC SCI2区,混沌编码量子粒子群算法QPSO+柔性车间调度,深度解析+性能实测
在柔性作业车间调度中,有效的调度对于提升生产效率、降低成本和减少能耗至关重要。本文研究了基于混沌编码方案QPSO在解决柔性作业车间调度问题(FJSP),尽管近期研究已展示QPSO在FJSP中的潜力,但对于不同混沌编码方案的效果仍未得到充分研究。因此,本文通过系统评估十四种混沌映射,并将其作为编码方案应用于QPSO框架,填补了这一空白。通过在基准数据集和工业案例中的实验结合混沌编码方案的QPSO不仅显著提升了解决方案质量,还加速了收敛过程,相较于传统的双层编码方案具有更优表现。原创 2025-07-26 17:08:48 · 854 阅读 · 0 评论 -
2025年ASOC SCI2区TOP,无人机集群路径规划与任务分配的组合优化在多障碍战场环境中的应用,深度解析+性能实测
为了提高无人机(UAV)的自主控制性能和综合作战能力,本文提出了一种用于无人机集群路径规划和任务分配的组合优化方法,涉及两个优化问题。对于路径规划,提出通过引入自适应势场调整和全局搜索,改进RRT*-APF算法。对比仿真结果表明,改进后的RRT*-APF算法在实现最短路径的同时,可以将优化时间减少超过80%。对于任务分配,输入最短路径后,采用考虑多重约束的离散粒子群算法(PSO)进行最优任务分配方案的求解。原创 2025-07-25 21:55:29 · 1084 阅读 · 0 评论 -
2024年ASOC SCI2区TOP,基于强化学习教与学优化算法RLPS-TLBO+风电场布局优化,深度解析+性能实测
随着全球对可再生能源需求的增长,风能作为一种环保能源得到了广泛关注。风力发电被视为减少碳排放、推动可持续发展的重要手段之一。在风电场中,多个风力发电机组协同工作,但下游风机不可避免地受到上游风机尾流的影响,导致部分风能未能得到有效利用。为减少尾流影响、提高风电场的发电效率并降低成本,本文提出了一种基于强化学习教与学优化算法(RLPS-TLBO),该算法的主要创新包括:将串行改为并行,加速收敛并提高效率;引入强化学习调整参数F,用于优化更新阶段的选择;原创 2025-07-24 18:20:35 · 1032 阅读 · 0 评论 -
2025年ASOC SCI2区TOP,基于直觉模糊熵与进化博弈论的自适应策略量子粒子群算法ASQPSO,深度解析+性能实测
由于种群多样性的过早衰减是启发式算法优化中的一个关键问题,许多增强全局搜索能力的方法被提出以避免陷入局部最优。然而,全局探索策略会分散对开发的资源投入从而降低优化精度。为在保证优化精度的同时维持算法的探索能力,本文提出了一种基于直觉模糊熵(IFE)和进化博弈论(EGT)的自适应策略量子粒子群算法(ASQPSO)。ASQPSO引入IFE用于量化算法种群多样性,基于EGT提出多种策略并构建算法结构,提升算法的探索与开发性能。原创 2025-07-23 19:22:36 · 740 阅读 · 0 评论 -
2025年COR SCI2区,基于多种配送模式的无人机自主配送车辆路径问题,深度解析+性能实测
自动配送车辆(ADV)和无人机因其高效、环保和便捷性在最后一公里配送中受到了广泛关注。此外,ADV与无人机之间的协同配送十分复杂,而现有的大多数研究主要集中在卡车与无人机之间单一配送模式下的协同配送。因此,本文提出了一种针对由ADV和异质无人机组成、基于多种配送模式的无人配送系统的新的车辆路径问题。针对该问题构建了一个以最小化成本为目标的混合整数规划(MIP)模型,称为基于多种配送模式的无人机自主配送车辆路径问题(ADVRPD-MDM)。原创 2025-07-22 15:42:02 · 1254 阅读 · 0 评论 -
2024年ASOC SCI2区TOP,基于Jaya算法的粒子滤波器用于非线性模型贝叶斯更新,深度解析+性能实测
粒子滤波器(PF)是一种常用的非线性系统状态和参数估计方法,但在实际应用中容易出现粒子退化和粒子贫乏的问题,尤其是在粒子数量有限的情况下,会影响估计精度。因此,本文提出了一种Jaya优化算法与粒子滤波器的混合方法(PF-JAYA),用于岩土工程中的状态与参数联合估计。研究结果表明,PF-JAYA在准确性、收敛速度、参数识别和粒子多样性等方面均优于传统的采样重要性重采样粒子滤波器(PF-SIR),且对先验分布的选择不敏感,能更好适应监测信息稀少的情形。原创 2025-07-21 23:14:14 · 881 阅读 · 0 评论 -
2025年AIR SCI1区TOP,缩减因子分数阶蜣螂优化算法FORDBO,深度解析+性能实测
传统DBO存在探索与开发能力失衡、求解精度低以及易陷入局部最优等问题。因此,本文提出了带有缩减因子分数阶蜣螂优化算法(FORDBO),其通过缩减因子实现探索与开发能力的动态平衡。分数阶微积分策略用于调整搜索区域边界,使算法能更有效地聚焦于潜在的优质解空间。此外,重复更新机制进一步增强了跳出局部最优的能力。原创 2025-07-20 22:14:37 · 666 阅读 · 0 评论 -
2025年SEVC SCI2区,带有精英策略的十进制人工蜂群算法DABC+不规则物品切割问题,深度解析+性能实测
本研究针对多个工业领域(如造船、建筑机械和汽车制造)中的不规则切割库存问题进行了探讨,这些行业普遍消耗大量金属板材,其目标是将单一尺寸的库存切割成所需的物品,以最大化材料利用率、最小化浪费。因此,本文采用了双扫描线方法表示不规则物品,并提出了一种带精英策略的十进制人工蜂群算法,该算法通过十进制向量表示解,并利用解码器将这些向量映射到问题的具体解上。此外,还开发了一种基于元启发式算法的混合算法,以进一步提高解的质量。考虑一组nnn个光栅化件PP1P2PnPP1P2...原创 2025-07-19 12:03:46 · 793 阅读 · 0 评论 -
2025年SEVC SCI2区,利用增强粒子群算法(MR-MPSO)优化MapReduce效率和降低复杂性,深度解析+性能实测
大数据的迅猛增长带来了严峻的数据管理挑战,尤其是在数据分布不均的庞大数据库中。由于这种不匹配,传统软件系统的效率大打折扣,导致数据处理复杂且低效。为解决这一问题,本文提出了一种MapReduce-增强粒子群算法(MR-MPSO),MR-MPSO方法不仅有效提升了大规模数据集的管理能力,还解决了数据不平衡带来的复杂性问题。MR框架用于处理大规模数据任务,MR-MPSO则优化map和reduce函数。原创 2025-07-18 09:34:39 · 1143 阅读 · 0 评论 -
2024年ASOC SCI2区TOP,基于干扰模型的灰狼优化算法IIE-GWO+复杂丘陵地形农业无人机轨迹规划,深度解析+性能实测
为解决农业无人机在复杂丘陵地形中轨迹规划的局限性,本文提出了一种结合丘陵地形特征和农业调度需求的轨迹规划模型。为了实现高效且稳定的飞行操作,提出了一种基于干涉图像增强模型的灰狼优化算法(IIE-GWO),该算法通过提高种群多样性,平衡探索与开发能力,从而优化飞行路径。原创 2025-07-17 11:14:14 · 771 阅读 · 0 评论 -
2022年CIE SCI2区TOP,NSGA-II+直升机-无人机搜救任务分配,深度解析+性能实测
无人机任务分配对于保障搜救活动高效有序开展具有重要意义,但现有研究较少考虑无人机作业环境与性能对任务分配的影响。针对低空风场和地形因素对无人机能耗与性能的影响,本研究提出了直升机释放位置选择与任务分配模型。考虑到地形因素会影响无人机探测区域,采用主成分分析法确定各搜救点的搜救等级,并运用聚类分析确定无人机悬停续航能力。结合无人机性能、低空风场等影响电池能耗的因素,构建无人机释放位置选择模型,采用改进二进制蝙蝠算法求解。原创 2025-07-16 10:59:52 · 708 阅读 · 0 评论 -
2025年ASOC SCI2区TOP,基于无人机-人协同的搜救双层任务规划算法,深度解析+性能实测
为了解决搜索与救援中的低效率和难以本地化的问题,本文提出了一种基于无人机-人合作的双层任务规划算法,涵盖了无人机的搜索层和救援人员的执行层。在搜索层,针对异构无人机任务分配不均和路径冗余问题,采用了基于聚类算法的覆盖路径优化(CPOC),该方法利用带比例约束的K-means算法,为每个无人机分配合适的任务区域,并通过非冗余的精确细胞分解法实现高效的子区域路径规划,同时利用最小-最大蚁群系统连接这些路径。原创 2025-07-14 10:15:46 · 1272 阅读 · 0 评论 -
2025年ASOC SCI2区TOP,聚类鲸鱼优化算法CWOA+冷链配送路径规划,深度解析+性能实测
在本研究中,针对多重约束下的冷链物流配送路径优化问题,综合考虑了制冷参数、货物损耗率和碳排放等关键因素,系统分析并量化了载重能力与环境温度对总运营成本的影响。为提升模型的现实适用性,引入了交通状况监测机制,实现对道路状态的动态评估,并获得了更为准确的运输时间。基于上述参数,构建了交通响应型冷链物流配送路径优化模型。原创 2025-07-13 11:56:36 · 563 阅读 · 0 评论 -
2023年IEEE TAES SCI2区,学习自适应遗传算法LAGA+地球电磁卫星调度,深度解析+性能实测
地球电磁探测卫星因其探测范围广、灵敏度高,在多个领域得到广泛应用。随着环境日益复杂和卫星数量激增,如何高效管理和调度成为亟需解决的问题。针对地球电磁卫星调度问题(EESSP),本文提出了一种学习自适应遗传算法(LAGA),该算法引入门控循环单元(GRU)神经网络,能够根据实时搜索信息动态调整遗传算子的参数,同时利用策略梯度强化学习优化神经网络模型,从而提升参数调整效率。LAGA还采用自适应进化机制实现交叉算子的自动选择,并结合启发式初始化、精英策略及局部搜索方法,进一步增强了算法性能。原创 2025-07-12 10:37:42 · 311 阅读 · 0 评论 -
2025年IEEE TETCI SCI2区,层内与层间竞争群体优化+大规模泊位分配与起重机指派,深度解析+性能实测
随着全球经济一体化的发展,海运运输业日益繁荣,自动化集装箱码头的建设需求不断提升。泊位分配与起重机指派一体化优化(BACAPs)作为关键问题,亟需高效的解决方案。目前,基于群体智能的计算方法虽在BACAPs中有所应用,但多局限于小规模或简化模型。针对这一现状,本文提出了一种融合层内与层间竞争机制的群体优化算法(I2HCSO),专门用于解决大规模BACAPs难题。I2HCSO方法通过分层群体模型和多级竞争机制,兼顾了算法的全局探索与局部开发能力,并首次在BACAPs中引入了船舶优先级优化和ε-约束处理。原创 2025-07-11 15:39:25 · 1033 阅读 · 0 评论 -
2020年IEEE TCYB SCI1区TOP,三重存档粒子群算法TAPSO,深度解析+性能实测
本文针对粒子群算法(PSO)中的两大核心问题——如何选择合适的学习范例和设计高效的学习模型,提出了一种三重存档粒子群优化算法(TAPSO)。TAPSO算法通过建立三个不同的存档,分别保存精英粒子、进步最快的获益粒子以及表现突出的范例粒子,实现了更优的范例选择和模型自适应。TAPSO 利用遗传算子从精英与获益粒子中生成新解,并根据范例的适应度为每个粒子动态调整学习模型。同时,优秀范例可被低效粒子反复利用,提升开发能力并节省计算资源。原创 2025-07-10 15:50:30 · 764 阅读 · 0 评论 -
2023年IEEE TITS SCI2区TOP,增强回溯搜索算法EBSA+多无人机辅助商业包裹递送系统飞行规划,深度解析+性能实测
利用无人机进行商业包裹投递可以显著推动物流行业的转型升级,这得益于节省了人力资源成本,而无人机正在成为智能交通运输系统的新组成部分。然而,由于电池容量有限,无人机的飞行距离通常受到限制。为应对这一挑战,本文设计了一种多无人机协作的商业包裹投递系统,该系统通过广义服务网络(GSN)支持长距离投递。GSN 的每个节点都配备有充电桩,为无人机提供充电服务。考虑到每个节点充电桩数量有限以及无人机电池容量有限,为了确保系统的高效运行,将无人机的飞行规划问题转化为一个基于优先级编码机制的大规模优化问题。原创 2025-07-09 21:49:28 · 1121 阅读 · 0 评论 -
2025年INS SCI2区,灵活交叉变异灰狼算法GWO_C/M+集群任务调度,深度解析+性能实测
随着云计算的快速发展,受自然现象启发的任务调度算法逐渐成为研究的热点。灰狼算法(GWO)因其强大的收敛性和易于实现的特点,受到了广泛关注。本文提出了一种自适应方法——带有交叉和变异灰狼算法(GWO_C/M),该方法将交叉和变异策略相结合,从而增强了GWO的灵活性和适应性。与传统的固定模型不同,GWO_C/M通过不同的交叉和变异策略组合,提升了探索与利用之间的平衡,解决了包括中心偏差在内的问题。原创 2025-07-08 20:50:45 · 749 阅读 · 0 评论 -
2025年IEEE TETCI SCI2区,群体合并粒子群算法GMPSO+农村基站部署,深度解析+性能实测
6G基站的部署为人们的生活带来了便利,但在农村地区的实施仍面临诸多挑战,基站部署的要求因此变得更加严苛。本文首先对农村基站部署环境进行建模,并提出了三个目标函数:基站部署的有效覆盖区域、信号安全性和均匀性,构建了一个加权多目标函数。为提高优化能力,本文提出了一种群体合并粒子群算法(GMPSO),将分裂和扰动项的概念引入粒子群优化中。通过在固定和随机环境中进行实验,并与近年来的多种粒子群优化(PSO)变种进行对比,分析了基站数量和聚类中心数目对结果的影响。村庄初始化。原创 2025-07-07 20:10:43 · 1335 阅读 · 0 评论 -
2025年ASOC SCI2区TOP,自适应维度多种群差分进化算AOD-MPDE+水下滑翔机运动规划,深度解析+性能实测
水下滑翔机运动规划问题由于对优化维度的高度敏感,带来了显著的优化挑战。因此,本文提出了一种自适应优化维多种群差分进化算法(AOD-MPDE),该算法包含三个异质子种群,每个子种群具有不同的优化维度,并采用混合初始化方法生成高质量的初始解。通过异质信息交互机制,子种群之间相互作用,优化变异策略并促进最佳个体信息的共享。为了优化维度的选择,提出了协同进化策略,结合了维度增减操作,使得算法能够自适应调整优化维度到最优值。原创 2025-07-06 11:02:11 · 488 阅读 · 0 评论 -
2020年ESWA SCI1区TOP,PQ-RRT *:一种改进移动机器人路径规划算法,深度解析+性能实测
在过去的十年里,基于采样的路径规划算法引起了广泛关注。RRT* 由于其渐进最优性,成为研究人员特别关注的对象。然而,RRT收敛速度较慢的局限性使其在实际应用中效率低下。为了克服这些局限性,本文提出了一种新颖的算法——PQ-RRT* ,它结合了P-RRT* (基于势函数RRT*)和Quick-RRT的优点。PQ-RRT保证了快速收敛到最优解,并生成更好的初始解。原创 2025-07-05 10:42:58 · 602 阅读 · 0 评论 -
2023年SEVC SCI2区,500+自然元启发式算法的性能评估与全面汇总,深度解析+性能实测
元启发式算法因其广泛应用和出色表现,近年来在学术界和工业界都备受关注,新算法层出不穷,灵感多来自生物、行为、物理等自然现象。然而,许多新提出的算法尚未经过严格的挑战性基准测试,也鲜有与最先进算法的系统对比。论文系统梳理并汇总了500多种元启发式算法,从灵感来源和关键操作等方面进行了归类,并选取了11种高引用新算法与4种公认的最优算法,在CEC2017测试集上进行全面性能评估。所有算法参数均通过irace工具自动调优,实验采用多种统计方法分析,包括算法的收敛性、多样性以及开发与探索的平衡。原创 2025-07-04 21:29:54 · 815 阅读 · 0 评论 -
2024年INS SCI2区,强化搜索自适应大邻域搜索算法RSALNS+无人机扩展型协作多任务分配,深度解析+性能实测
为应对日益复杂的军事任务需求,多架异构无人机的协同作业成为提升任务执行效率的关键。本文提出了扩展型协作多任务分配问题(ECMTAP),其调度不同基站的异构无人机完成具有时序约束的多类型目标任务,目标是最小化总体任务完成时间。ECMTAP中不同目标类型对应不同任务组合,并要求打击任务在侦察任务之后、评估任务在打击任务之后进行,显著提升了任务分配的复杂性。因此,本文提出了基于强化搜索策略的自适应大邻域搜索算法(RSALNS),通过目标内任务调整与评估任务调整两种核心破坏-修复机制,有效优化任务序列和分配策略。原创 2025-07-03 18:06:33 · 1015 阅读 · 0 评论 -
2025年ASOC SCI2区TOP,基于强化学习自学习鲸鱼优化算法SLWOA+双资源柔性作业车间调度,深度解析+性能实测
近年来,生产系统领域的研究重点之一是开发先进优化算法,用来应对制造系统调度过程中日益增长的复杂性。为此,研究者们逐渐将强化学习方法引入元启发式算法,以提升调度效率和算法性能。本文聚焦于双资源柔性作业车间调度(DRFJSS)问题,即每道工序在加工时需同时分配可重构机床和工人两种资源。为优化完工时间,本文首先建立了混合整数线性规划(MILP)模型,提出了一种基于强化学习的自学习鲸鱼优化算法(SLWOA),通过SARSA算法训练智能体,实现了算法在探索与利用之间的有效平衡。原创 2025-07-02 19:17:40 · 1531 阅读 · 0 评论 -
2021年IEEE TEVC SCI1区TOP,基于策略梯度的优化经验学习自适应差分进化算法LDE,深度解析+性能实测
差分进化(DE)作为一种著名的群体智能优化算法,其性能高度依赖于变异、交叉策略及相关参数的设置,然而传统参数设定过程往往繁琐且低效。针对这一问题,本文提出了一种全新的自适应参数控制方法,通过借助强化学习中的策略梯度算法,用于训练一个智能体并从多个优化问题的经验中学习最优参数控制策略,将参数控制过程建模为有限视界的马尔可夫决策过程。原创 2025-07-01 13:28:58 · 283 阅读 · 0 评论 -
2025年IEEE TCE SCI2区,增强灰狼算法AEGWO+无人机协同优化消费电子网络资源利用率,深度解析+性能实测
随着电子技术的不断发展,消费电子设备已经成为人们日常生活中不可或缺的一部分。然而,设备功能日益复杂、数据量急剧增长,使得资源高效利用和计算性能提升成为消费电子网络中亟需解决的重要难题。现有方法在应对动态复杂环境时,往往难以兼顾全局优化与局部微调,导致资源调度效率低下,限制了系统扩展性。因此,本文提出了一种自适应增强灰狼优化算法(AEGWO),融合了猎鹰捕食策略,提升了无人机网络的协同计算能力。原创 2025-06-30 18:18:06 · 547 阅读 · 0 评论 -
2025年IOTJ SCI2区TOP,动态协同鲸鱼优化算法DCWOA+多车车联网路径规划,深度解析+性能实测
车联网(IoV)为动态交通环境下的路径规划算法带来了重大挑战,本文提出了一种用于多车辆路径规划的动态协同鲸鱼优化算法(DCWOA)。DCWOA算法通过引入三层结构(个体层、小组层和协同层),实现了局部与全局的高效优化。DCWOA的创新包括:融合包围与螺旋更新机制的动态调整因子、基于车辆通信的局部与全局协同机制,以及集成行驶时间、油耗、安全性和排放的多目标加权决策模型。原创 2025-06-29 09:01:43 · 786 阅读 · 0 评论 -
2025年COR SCI2区,结合RRT*-A*算法IA-RRT*+AGV路径规划,深度解析+性能实测
高效路径规划算法的实施可以提升自动导引车(AGV)的运输效率,目前车间中使用的路径规划算法虽然能够确定最短路径,但仍存在搜索效率低、搜索时间长、路径拐点多等问题。这些问题可能会对AGV的运输效率产生负面影响,使其不适用于实际车间环境。因此,本文提出了一种新的路径规划算法(IA-RRT*),该算法对A* 算法的代价评估函数进行了改进,削弱了搜索方向的引导性,从而缩小了搜索范围,避免算法过快收敛并陷入局部最优路径。原创 2025-06-28 10:27:06 · 565 阅读 · 0 评论 -
2022年SEVC SCI2区,分数阶蚁群算法FACA:一种基于分数阶长期记忆的合作学习方法,深度解析+性能实测
本文提出了一种新颖分数阶蚁群算法(Fractional-Order Ant Colony Algorithm, FACA),这是一种基于分数阶长期记忆的协同学习方法。整数阶蚁群算法每只蚂蚁根据由信息素值以及其当前位置邻接边上的附加信息计算出的转移概率来选择下一条路径,FACA引入了分数阶微积分中的长期记忆机制,通过更复杂的转移表达式模拟具有前瞻性的决策行为,从而增强搜索能力。原创 2025-06-27 17:31:42 · 478 阅读 · 0 评论 -
2025年ESWA SCI1区TOP,领导者驱动粒子群算法LDPSO,深度解析+性能实测
本文提出了一种由领导者主导的粒子群算法(LDPSO),用来克服传统PSO在信息利用不足、搜索效率低和易早熟收敛等问题。LDPSO通过引入领导者-跟随者机制,将表现优异的粒子设为领导者,引导其余跟随者集中搜索潜力区域。LDPSO算法采用双向搜索策略增强领导者的全局探索能力,单向策略则提升跟随者的局部开发效率。同时,设有协同跳出机制,帮助陷入停滞的粒子跳出局部最优。随着搜索推进,领导者数量逐步减少,搜索策略由广度探索过渡至精细开发。原创 2025-06-26 20:39:30 · 922 阅读 · 0 评论 -
2024年AEI SCI1区TOP,强化学习人工兔优化算法RLTARO+山地森林地形无人机编队路径规划,深度解析+性能实测
无人机编队路径规划在山区森林监测任务中具有重要意义,受限于陡峭复杂的地形与茂密的植被,规划最优飞行路径面临较大挑战。因此,本研究构建了融合飞行距离、碰撞风险与路径稳定性等多重约束的数学模型,将复杂的编队路径规划问题转化为优化求解问题。针对该多约束优化问题,提出了融合强化学习与热传导搜索策略的人工兔子优化算法(RLTARO)提升在复杂场景中的全局探索与局部开发能力以及收敛性能。原创 2025-06-25 20:49:44 · 1035 阅读 · 0 评论 -
2022年INS SCI2区,三叉搜索树差分进化算法TSTDE+三维装箱问题,深度解析+性能实测
三维装箱问题(3D-CLP)是一类具有复杂约束条件的强 NP 难组合优化问题,在集装箱装载等实际应用中极难求解。传统精确算法在合理时间内往往难以获得最优解,本文提出了一种三叉搜索树差分进化算法(TSTDE),通过三叉树模型生成高质量初始种群,利用改进的 DE 算法搜索可行解。原创 2025-06-24 09:37:10 · 821 阅读 · 0 评论 -
2022年ASOC SCI2区TOP,遗传算法GA 灰狼算法GWO+飞机布置特殊装箱问题,深度解析+性能实测
本文针对一种特殊不规则装箱问题提出解决方案,需要将可自由旋转的不规则零件排布在带有缺陷区域的大型不规则板材上,满足关键点位于容器内的边界约束,而非传统的整体位于板内。该问题在已有文献中尚属首次提出,现有方法难以适用。为实现自动化排布并提升空间利用率,本文设计了基于遗传算法与灰狼算法的双重求解策略。遗传算法引入精英保留机制,灰狼算法采用新型参数更新方法以增强搜索能力。两种算法均通过向量编码方式表示解,并借助创新的启发式解码算法将其转化为排布方案,分阶段优化以兼顾约束满足与空间效率。原创 2025-06-23 17:05:04 · 758 阅读 · 0 评论 -
2025年EAAI SCI1区TOP,基于低差异序列的仿果蝇无人机地下环境路径规划算法,深度解析+性能实测
高维路径规划在无人机(UAV)应用中尤为重要,特别是在地下环境中,由于缺乏GPS信号,路径规划面临较大挑战。传统的快速探索随机树(RRT)算法使用伪随机序列,导致了欠采样、过采样以及计算成本高、路径冗余等问题。为了解决这些问题,本文提出了一种基于Halton序列的聚类(HBC-RRT)算法,该算法通过替代伪随机序列,根本性地解决了RRT算法中的采样问题。原创 2025-06-22 10:49:13 · 891 阅读 · 0 评论 -
2025年ASOC SCI2区TOP,基于适应度景观特征的协同分布估计算法FL-CEDA,深度解析+性能实测
分布估计算法(EDA)通过概率模型来描述优秀解的分布,因此能够有效应对复杂优化问题。然而,基于单一概率模型的采样会导致种群多样性较差,难以充分探索解空间,从而使算法过早收敛。为提升EDA在复杂优化问题中的性能,本文提出了一种基于适应度景观的协同分布估计算法(FL-CEDA),该方法结合了均值移动与协方差矩阵自适应收缩,引导种群快速进化到潜在优秀区域。通过融合镜像采样和高斯采样的协同操作,兼顾了解空间的探索与开发。通过量化局部适应度景观的崎岖程度,自适应选择适合当前问题特征的采样方式,从而提高采样效率。原创 2025-06-21 10:29:27 · 916 阅读 · 0 评论