完全二叉树的节点个数(Java)

本文介绍三种高效计算完全二叉树节点数量的方法。利用完全二叉树的特性,结合二分查找、位运算及递归等算法,实现快速准确的节点计数。

给出一个完全二叉树,求出该树的节点个数。

说明:
完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^{h} 个节点。

示例:
输入:
               1
            /     \
        2          3
    /     \      /
4         5  6

输出: 6

 

package com.loo;

public class CountTreeNodes {

    public static void main(String[] args) {
        TreeNode root = new TreeNode(1);
        TreeNode left1 = new TreeNode(2);
        TreeNode right1 = new TreeNode(3);
        TreeNode left2 = new TreeNode(4);
        TreeNode left3 = new TreeNode(5);
        TreeNode right2 = new TreeNode(6);
        TreeNode right3 = new TreeNode(7);
        TreeNode left4 = new TreeNode(8);
        TreeNode left5 = new TreeNode(9);
        TreeNode left6 = new TreeNode(10);
        TreeNode left7 = new TreeNode(11);
        TreeNode right4 = new TreeNode(12);
        root.left = left1;
        root.right = right1;
        left1.left = left2;
        left1.right = left3;
        left2.left = left4;
        left2.right = left5;
        left3.left = left6;
        left3.right = left7;
        right1.left = right2;
        right1.right = right3;
        right2.left = right4;
        System.out.println(getCountTreeNodes1(root));
        System.out.println(getCountTreeNodes2(root));
        System.out.println(getCountTreeNodes3(root));
    }
    /*

规定根节点位于第 0 层,完全二叉树的最大层数为 h。根据完全二叉树的特性可知,完全二叉树的最左边的节点一定位于最底层,因此从根节点出发,每次访问左子节点,直到遇到叶子节点,该叶子节点即为完全二叉树的最左边的节点,经过的路径长度即为最大层数 h。
当 0≤i<h 时,第 i 层包含 2^{i} 个节点,最底层包含的节点数最少为 1,最多为 2^{h}
当最底层包含 1 个节点时,完全二叉树的节点个数是 2^{h},当最底层包含  2^{h} 个节点时,完全二叉树的节点个数是 2^{h+1} - 1
因此对于最大层数为 h 的完全二叉树,节点个数一定在 [2^{h},2^{h+1} - 1] 的范围内,可以在该范围内通过二分查找的方式得到完全二叉树的节点个数。
具体是,根据节点个数范围的上下界得到当前需要判断的节点个数 k,如果第 k 个节点存在,则节点个数一定大于或等于 k,如果第 k 个节点不存在,则节点个数一定小于 k,由此可以将查找的范围缩小一半,直到得到节点个数。如果第 k 个节点位于第 h 层,则 k 的二进制表示包含 h+1 位,其中最高位是 1,其余各位从高到低表示从根节点到第 k 个节点的路径,0 表示移动到左子节点,1 表示移动到右子节点。通过位运算得到第 k 个节点对应的路径,判断该路径对应的节点是否存在,即可判断第 k 个节点是否存在。

    */
    public static int getCountTreeNodes1(TreeNode root) {
        if (root == null) {
            return 0;
        }
        TreeNode node = root;
        int level = 0;
        while (node.left != null) {
            level++;
            node = node.left;
        }
        int l = 1 << level;
        int h = (1 << (level + 1)) - 1;
        while (l < h) {
            int mid = ((h - l + 1) >> 1) + l; // ((h - l + 1) >> 1) == ((h - l + 1) / 2 )
            boolean bool = nodeExists(root , level , mid);
            if (bool) {
                l = mid;
            } else {
                h = mid - 1;
            }
        }
        return l;
    }
    
    public static boolean nodeExists(TreeNode node , int level , int k) {
        TreeNode temp = node;
        int bits = 1 << (level - 1);
        while (temp != null && bits > 0) {
            if ((bits & k) == 0) {
                temp = temp.left;
            } else {
                temp = temp.right;
            }
            bits >>= 1;
        }
        return temp!=null;
    }
    /*

    leftCount == rightCount。这说明,左子树一定是满二叉树,因为节点已经填充到右子树了,左子树必定已经填满了。所以左子树的节点总数我们可以直接得到,是 2^leftCount - 1,加上当前这个 root 节点,则正好是 2^leftCount。再对右子树进行递归统计。
    leftCount != rightCount。说明此时最后一层不满,但倒数第二层已经满了,可以直接得到右子树的节点个数。同理,右子树节点加 root 节点,总数为 2^rightCount。再对左子树进行递归查找。

    */
    public static int getCountTreeNodes2(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftCount = countLevel(root.left);
        int rightCount = countLevel(root.right);
        if (leftCount == rightCount) {
            return getCountTreeNodes2(root.right) + (1 << leftCount);
        }
        return getCountTreeNodes2(root.left) + (1 << rightCount);
    }
    
    public static int countLevel(TreeNode root) {
        int level = 0;
        while (root!=null) {
            level++;
            root = root.left;
        }
        return level;
    }
    
    public static int getCountTreeNodes3(TreeNode root) {
        // 如果树是空的,直接返回
        if (root == null) {
            return 0;
        }
        // 计算树的高度
        int height = getTreeNodeHeight(root);
        // 如果树高度是1,直接返回
        if (height <= 1) {
            return height;
        }
        // 如果右子树的高度是树的高度减1,说明左子树是满二叉树. 左子树可以通过公式计算,只需要递归右子树
        if (getTreeNodeHeight(root.right) == height - 1) {
            return (1 << (height - 1)) + getCountTreeNodes3(root.right);
        } else {
            // 如果右子树的高度不是树的高度减1,说明右子树是满二叉树,可以通过公式计算右子树,只需要递归左子树
            return (1 << (height - 2)) + getCountTreeNodes3(root.left);
        }
    }
    
    // 计算树的高度
    public static int getTreeNodeHeight(TreeNode root) {
        return root == null ? 0 : 1 + getTreeNodeHeight(root.left);
    }
    
    static class TreeNode {
        int value;
        TreeNode left;
        TreeNode right;
        TreeNode(int v) {
            value = v;
        }
    }

}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值