前K个高频元素(topK)

本文介绍如何使用HashMap和PriorityQueue实现,通过统计每个元素的出现次数,并保持高频元素队列,以低于O(nlogn)的时间复杂度找出数组中出现频率最高的k个元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个非空的整数数组,返回其中出现频率前 k 高的元素。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2 
输出: [1,2] 
示例 2: 
输入: nums = [1], k = 1 
输出: [1] 

提示:
可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的。 可以按任意顺序返回答案。
 

package com.loo;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.PriorityQueue;

public class TopKFrequent {

    public static void main(String[] args) {
        int[] nums = new int[] {1,1,1,2,2,3};
        int k = 2;
        System.out.println(getTopKFrequent(nums , k));
    }
    
    public static List<Integer> getTopKFrequent(int[] nums , int k) {
        List<Integer> list = new ArrayList<Integer>();
        if (nums == null || nums.length == 0 || k <= 0) {
            return list;
        }
        Map<Integer , Integer> map = new HashMap<Integer , Integer>();
        map.clear();
        for (int i=0;i<nums.length;i++) {
            if (map.containsKey(nums[i])) {
                map.put(nums[i], map.get(nums[i]) + 1);
            } else {
                map.put(nums[i], 1);
            }
        }
        PriorityQueue<Integer> pq = new PriorityQueue<Integer>(new Comparator<Integer>() {
            @Override
            public int compare(Integer a, Integer b) {
                return map.get(a) - map.get(b);
            }});
        for (Integer key : map.keySet()) {
            if (pq.size() < k) {
                pq.add(key);
            } else if (map.get(key)>map.get(pq.peek())) {
                pq.remove();
                pq.add(key);
            }
        }
        while (!pq.isEmpty()) {
            list.add(pq.remove());
        }
//        Collections.sort(list);
        return list;
    }

}
 

### 找到数据集中K个高频元素的Python实现 以下是基于提供的引用内容和专业知识,针对寻找数据集中K个高频元素的一种效解决方案。该方案利用了`collections.Counter`模块来统计频率,并通过小顶堆(heapq)筛选出K个高频元素。 #### 方法概述 为了满足时间复杂度的要求并减少不必要的计算开销,可以采用如下策略: - 使用 `collections.Counter` 统计输入列表中各元素的出现次数[^1]。 - 利用堆(Heap)这种数据结构维护当发现的K个高频元素。由于堆能够快速调整内部顺序,在处理大规模数据时效率较[^2]。 下面是一个完整的 Python 实现: ```python from collections import Counter import heapq def topKFrequent(nums, k): # Step 1: Count the frequency of each element using Counter. count = Counter(nums) # Step 2: Use a heap to maintain the top-k frequent elements. return [item for item, freq in heapq.nlargest(k, count.items(), key=lambda x: x[1])] # Example usage: if __name__ == "__main__": nums = [1, 1, 1, 2, 2, 3] k = 2 result = topKFrequent(nums, k) print(result) # Output might be [1, 2], depending on implementation details. ``` 上述代码片段实现了以下逻辑: 1. **统计频率**:借助 `Counter` 类型创建字典形式的结果,其中键为原始数组中的数值,值为其对应的出现次数。 2. **构建堆**:调用内置函数 `heapq.nlargest()` 来获取按频率降序排列的最大k项[(key-value pairs)][]^2]^. 这种方法的时间复杂度主要由两部分组成: - 构建哈希表 O(n),n 是原数组长度; - 调整大小固定的最小堆至最终状态所需操作约为O(k log p),p表示不同数字总数[^4]. 综上所述,整体性能表现良好尤其当目标参数k远小于实际可能候选者数量级情况下更为明显优势突出。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值