流密码:高效同态密文压缩的实用解决方案
1. 引言
全同态加密(FHE)自Gentry取得突破性成果以来,基于同态加密的更简单、更高效的方案不断涌现。FHE允许对加密数据进行任意计算,为云服务等多个领域带来了新的应用。
在云应用中,通常是用户Alice用Bob的公钥pk对明文m进行加密,得到同态密文c = HEpk(m),并将其发送给云第三方评估者Charlie。然而,目前所有的同态加密方案都存在密文扩展过大的问题,这使得密文c在传输过程中成为了显著的瓶颈。
为了解决这个问题,有人提出了压缩加密的方法。Alice随机选择一个密钥k,用对称加密方案E对m进行加密,然后发送一个更小的密文c′ = (HEpk(k), Ek(m))给Charlie。Charlie利用同态加密的性质,通过对解密电路CE−1进行同态评估,恢复出原始密文c = HEpk(m)。这种方法可以看作是同态密文的压缩方法,但如何选择对称加密方案E,在保持安全级别的同时最小化解压开销,仍然是一个有待解决的问题。
2. 相关研究现状
以往对几种对称原语的同态评估成本进行了研究,包括AES的优化实现,以及轻量级分组密码Simon和Prince。轻量级分组密码通常被认为是在加密域中进行高效评估的自然选择,但它们在同态加密环境中可能表现不佳。
当代同态加密方案使用带噪声的密文,同态乘法会使噪声大幅增加,而最大允许噪声水平主要取决于电路的乘法深度。许多轻量级分组密码为了简化设计,增加了轮数,从而显著增加了乘法深度,这种设计在同态加密环境中是不可行的。
Prince似乎比AES和Simon更适合同态评估,因为它专门针对低延迟应用进行设计。Albre