36、流密码:高效同态密文压缩的实用解决方案

流密码:高效同态密文压缩的实用解决方案

1. 引言

全同态加密(FHE)自Gentry取得突破性成果以来,基于同态加密的更简单、更高效的方案不断涌现。FHE允许对加密数据进行任意计算,为云服务等多个领域带来了新的应用。

在云应用中,通常是用户Alice用Bob的公钥pk对明文m进行加密,得到同态密文c = HEpk(m),并将其发送给云第三方评估者Charlie。然而,目前所有的同态加密方案都存在密文扩展过大的问题,这使得密文c在传输过程中成为了显著的瓶颈。

为了解决这个问题,有人提出了压缩加密的方法。Alice随机选择一个密钥k,用对称加密方案E对m进行加密,然后发送一个更小的密文c′ = (HEpk(k), Ek(m))给Charlie。Charlie利用同态加密的性质,通过对解密电路CE−1进行同态评估,恢复出原始密文c = HEpk(m)。这种方法可以看作是同态密文的压缩方法,但如何选择对称加密方案E,在保持安全级别的同时最小化解压开销,仍然是一个有待解决的问题。

2. 相关研究现状

以往对几种对称原语的同态评估成本进行了研究,包括AES的优化实现,以及轻量级分组密码Simon和Prince。轻量级分组密码通常被认为是在加密域中进行高效评估的自然选择,但它们在同态加密环境中可能表现不佳。

当代同态加密方案使用带噪声的密文,同态乘法会使噪声大幅增加,而最大允许噪声水平主要取决于电路的乘法深度。许多轻量级分组密码为了简化设计,增加了轮数,从而显著增加了乘法深度,这种设计在同态加密环境中是不可行的。

Prince似乎比AES和Simon更适合同态评估,因为它专门针对低延迟应用进行设计。Albre

内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值