Codeforces Round 987 (Div. 2)题解 A~D

A- Penchick and Modern Monument

由于给定的数是非递增的,所以 h[i]≥h[i+1]h_[i]\geq h[i+1]h[i]h[i+1],如果 h[i]>h[i+1]h[i]>h[i+1]h[i]>h[i+1] 那么二者至少要改其一。因为最终要求的数是非递减的,所以最终数组内都是同一种数的方案是可行的。枚举最后会成为数组中的哪一个数即可。

void solve () {
   
   
    int n;
    cin >> n;

    vector <int> h(n + 1);
    for (int i = 1; i <= n; i++) cin >> h[i];


    int ans = INF;
    for (int i = 1; i <= n; i++) {
   
   
        int sum = 0;
         
        for (int j = 1; j <= n; j++) 
            if (h[j] != h[i]) sum ++;
         
        ans = min(sum, ans);
    }

    cout << ans << endl;
}
B- Penchick and Satay Sticks

假设 1∼i−11\sim i-11i1 已经放好了,如果 p[i]≠ip[i]\neq ip[i]=i 的话,现在要把 iii 位置放好,当且仅当 p[i+1]=ip[i+1]=ip[i+1]=i 并且 p[i]=i+1p[i]=i+1p[i]=i

### 关于Codeforces Round 704 Div. 2 的信息 对于Codeforces Round 704 Div. 2的比赛,虽然未直接提及具体题目解析或参赛体验的内容,但是可以根据平台的一贯风格推测该轮比赛同样包含了多种算法挑战。通常这类赛事会涉及数据结构、动态规划、图论等方面的知识。 考虑到提供的参考资料并未覆盖到此特定编号的比赛详情[^1],建议访问Codeforces官方网站查询官方题解或是浏览社区论坛获取其他选手分享的经验总结。一般而言,在赛后不久就会有详细的解答发布出来供学习交流之用。 为了帮助理解同类型的竞赛内容,这里提供了一个基于过往相似赛事的例子——如何通过居中子数组特性来解决问题的方法: ```cpp // 假设有一个函数用于处理给定条件下的数组恢复问题 vector<int> restoreArray(vector<vector<int>>& adjacentPairs) { unordered_map<int, vector<int>> adj; for (auto& p : adjacentPairs){ adj[p[0]].push_back(p[1]); adj[p[1]].push_back(p[0]); } int start = 0; for(auto& [num, neighbors] : adj){ if(neighbors.size() == 1){ start = num; break; } } vector<int> res(adjacentPairs.size() + 1); unordered_set<int> seen; function<void(int,int)> dfs = [&](int node, int idx){ seen.insert(node); res[idx] = node; for(auto next : adj[node]){ if(!seen.count(next)){ dfs(next, idx + 1); } } }; dfs(start, 0); return res; } ``` 上述代码展示了利用深度优先搜索(DFS)重建原始序列的一种方式,这与某些情况下解决Codeforces比赛中遇到的问题思路相吻合[^4]。 #### 注意事项 由于缺乏针对Codeforces Round 704 Div. 2的具体材料支持,以上解释更多依赖于对同类活动的理解以及编程技巧的应用实例来进行说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

louisdlee.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值