【Pandas驯化-17】一文搞懂Pandas如何优雅的连接mysql函数to_sql技巧

【Pandas驯化-17】一文搞懂Pandas如何优雅的连接mysql函数to_sql技巧
 
本次修炼方法请往下查看
在这里插入图片描述

🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地!
🎇 相关内容文档获取 微信公众号
🎇 相关内容视频讲解 B站

🎓 博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位 个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项目实战经验

🔧 技术专长: 在机器学习、搜索、广告、推荐、CV、NLP、多模态、数据分析等算法相关领域有丰富的项目实战经验。已累计为求职、科研、学习等需求提供近千次有偿|无偿定制化服务,助力多位小伙伴在学习、求职、工作上少走弯路、提高效率,近一年好评率100%

📝 博客风采: 积极分享关于机器学习、深度学习、数据分析、NLP、PyTorch、Python、Linux、工作、项目总结相关的实用内容。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


下滑查看解决方法

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

🎯 1. 基本介绍

  在数据分析和数据科学项目中,经常需要将数据在不同的存储介质之间进行迁移。Pandas 提供了非常方便的功能,可以轻松地将 DataFrame 数据写入到 MySQL 数据库中。这通常通过 SQLAlchemy 这个 Python SQL 工具包来实现,它为数据库提供了一个优雅的接口。

💡 2. 使用方法

2.1 安装必要的库

  首先,确保安装了 pandas, pymysql, 和 SQLAlchemy。

pip install pandas pymysql sqlalchemy

2.2 创建数据库连接引擎

  使用 create_engine 函数创建数据库连接。

import pymysql
from sqlalchemy import create_engine

def connect_mysql(host='0.0.0.0',
                  port=3306, 
                  user='ttt', 
                  password='1234', 
                  db='fds'):
    try:
        utf_flag = "charset=utf8"
        engine = create_engine(f"mysql+pymysql://{user}:{password}@{host}:{port}/{db}?{utf_flag}")
        print("数据库连接成功!")
    except Exception as e:
        print("数据库连接失败:", e)
    return engine

2.3 将DataFrame写入MySQL

  使用 to_sql 方法将 DataFrame 数据写入到 MySQL 数据库中。

import pandas as pd

# 假设 df_res 是我们要写入数据库的 DataFrame
df_res = pd.DataFrame({
    'column1': [1, 2, 3],
    'column2': ['A', 'B', 'C']
})

# 获取数据库连接引擎
engine = connect_mysql()

# 写入数据,这里需要指定表名和更新标志
table_name = 'your_table_name'
update_flag = 'append'  # 或 'replace'

with engine.begin() as conn:
    df_res.to_sql(name=table_name, con=conn, if_exists=update_flag, index=False)

🔍 3. 注意事项

  对上述的各个函数在使用的过程中需要注意的一些事项,不然可能会出现error,具体主要为:

  • 确保在 connect_mysql 函数中正确设置了数据库连接参数,包括主机、端口、用户名、密码、数据库名。
  • to_sql 方法中的 if_exists 参数可以设置为 ‘fail’、‘replace’ 或 ‘append’,以控制当表已存在时的行为。
  • 设置 index=False 可以防止 Pandas 将 DataFrame 的索引作为一列写入数据库。
    确保在写入数据之前,DataFrame 的列数据类型与数据库中的列数据类型兼容。

🔧 4. 总结

  本文介绍了如何使用 Pandas 和 SQLAlchemy 将 DataFrame 数据写入 MySQL 数据库。通过创建数据库连接引擎和使用 to_sql 方法,我们可以方便地将数据导入到数据库中。这些技术在数据迁移和数据仓库操作中非常有用。希望这篇博客能够帮助你更好地理解并应用这些数据导入技巧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法驯化师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值