- 博客(857)
- 资源 (9)
- 收藏
- 关注

原创 具身智能操作知识梳理与拓展
NPY: NumPy原生格式,存储单个数组或字典TFDS: TensorFlow Datasets格式,用于TensorFlow生态系统RLDS: Robotics Language-conditioned Dataset,机器人任务数据集HDF5: 分层数据格式,支持大型复杂结构化数据。
2025-04-23 13:54:52
4974
1

转载 强化学习的几个主要方法(策略梯度、PPO、REINFORCE实现等)---下
策略梯度算法在理想情况下,在采样次数足够多的情况下效果是能很不错的,但是当采样不够时就会出现一些问题,例如GtG_tGt的取值是很不稳定的,下图可以形象说明:由于GtG_tGt的取值不稳定,所以(st,at)(s_t, a_t)(st,at)更新也不稳定。由于GGG的值有点太不稳定太玄学了,因此我们可以想办法去用一个神经网络去预测在sss状态下采取行动aaa时对应的GGG期望值,之后再训练中我们就直接用这个期望值去替代采样的值。为了完成这个目的,我们可以使用基于价值的方法深度Q网络,深度Q网络有两种
2025-01-22 15:23:34
5456

转载 强化学习的几个主要方法(策略梯度、PPO、REINFORCE实现等)---上
策略梯度算法在理想情况下,在采样次数足够多的情况下效果是能很不错的,但是当采样不够时就会出现一些问题,例如GtG_tGt的取值是很不稳定的,下图可以形象说明:由于GtG_tGt的取值不稳定,所以(st,at)(s_t, a_t)(st,at)更新也不稳定。由于GGG的值有点太不稳定太玄学了,因此我们可以想办法去用一个神经网络去预测在sss状态下采取行动aaa时对应的GGG期望值,之后再训练中我们就直接用这个期望值去替代采样的值。为了完成这个目的,我们可以使用基于价值的方法深度Q网络,深度Q网络有两种
2025-01-22 15:21:31
5399

转载 看完这篇文章,我终于搞懂了 CMake,真香!(高级篇补充)
不要硬编码路径用相对路径,让用户通过文件会安装到和。更灵活,无需管理员权限,跨平台也好用!如果有一些头文件没有实现(比如接口、纯抽象类),可以用INTERFACE接口库(INTERFACE)用于配置一些公共的链接和编译选项,小型项目可能用得少,大型项目常见。CMake 是个强大的工具,但要用得好,还是需要一些技巧和经验。包管理和安装配置:重点是让你的库好用、易装。
2025-01-10 18:25:58
7789

转载 聊聊端到端自动驾驶通用感知架构的前世今生
这张图演示的是相关方法的演进。这其中大部分都是基于BEV的方法,上图就是BEV-based相关方法的相关演进, 用某种方式将图像视角特征转到BEV特征空间,也就是一个高度方向拍扁的自车3D坐标系空间下,再用一个检测的Head实现目标检测。BEV这张图的尺寸通常比较大,比如一般常见的论文里面会用128×128 size,但在实际中,我们甚至会用两倍大小的BEV特征图。从图像特征空间向BEV层空间转换过程,是一个非常密集的计算过程。
2024-10-23 10:33:10
4971

转载 空间坐标(系)如何进行变换?
要描述某一物体在现实场景的位置,通常以三维空间坐标系下的坐标进行说明,当物体位置或自身进行变化时,可以用放射变换说明物体的变化情况。根据现实情况,坐标系和物体可以相互描述,即二维平面坐标(系)变换的情况包括一个二维平面坐标系描述一个物体(坐标)变换情况和一个物体(坐标)在两个二维平面坐标系间的变换情况。根据现实情况,坐标系和物体可以相互描述,即三维空间坐标(系)变换的情况包括一个三维空间坐标系描述一个物体(坐标)变换情况和一个物体(坐标)在两个三维空间坐标系间的变换情况。[3] 你不来我不老.
2024-09-04 10:45:26
2318

原创 Clion 使用
默认情况下,CLion编译使用的CMake是其内置的一个版本,而使用这个版本的CMake进行编译时会报出一些莫名其妙的错误,命令行中catkin_make明明可以正常编译,而这里就是会失败。回到一开始的"Threads & Variables"窗口,左上角有一些控制按钮,从左到右依次是:Rerun(Ctrl+F5),Stop(Ctrl+F2),Resume(F9),Pause(暂时用不上),Step Over(F8),Step Into(F9),Step Out(Shift+F8)。
2024-08-31 16:21:38
10615

转载 IMU preintegration on manifold 学习笔记(一)
Posted on 2023-02-18 Edited on 2024-07-11 In vslam Views:ω∧=[ω_1ω_2ω_3]∧=[0−ω_3ω_2ω_30−ω_1−ω_2ω_10]=WW∨=[0−ω_3ω_2ω_30−ω_1−ω_2ω_10]∨=[ω_1ω_2ω_3]=ω\mathbf{\omega}^{\wedge}=\begin{bmatrix}\omega\_1\\ \omega\_2\\ \omega\_3\end{bmatrix}^{\wedge}=\begin{bmatrix}
2024-07-12 12:10:41
3687

原创 CMakeList整理大全
之前我们也整理过。但是这里面整理的内容其实是不全的。所以我们需要进一步将CMake的使用整理好。以供后面的学习的工程师来检索查询。
2024-04-29 14:41:26
19129

原创 C++ CPU程序占用率高问题排查
我们在之前介绍了使用Valgrind、perf、AddressSanitzer等工具来完成内存泄漏的检测,当然内存泄漏以外还有cpu的占用率变高这类问题。作者在这里提供几个方法来对C++程序中CPU程序占用率高问题排查。
2023-12-29 13:14:36
8939

转载 Linux中.a、.so和.o文件以及-I,-L,LIBRARY_PATH,LD_LIBRARY_PATH等
(3) 修改/etc/ld.so.conf文件,把库所在的路径加到文件末尾(直接写在文件末尾,不要在路径前加include),并执行ldconfig刷新(ldconfig 命令的用途,主要是在默认搜寻目录(/lib和/usr/lib)以及动态库配置文件/etc/ld.so.conf内所列的目录下,搜索出可共享的动态链接库(格式如前介绍,lib*.so*),进而创建出动态装入程序(ld.so)所需的连接和缓存文件.缓存文件默认为/etc/ld.so.cache,此文件保存已排好序的动态链接库名字列表.)。
2023-08-16 17:14:24
3857

原创 SLAM本质剖析番外-李群李代数的微分和导数
这几个月,博主已经从SLAM算法的使用向着算法的数学推导进行了记录和分享,之前也分享了一文,从现象中解释了李群和李代数表达的含义。但是这还不够,所以这次作者作为SLAM本质剖析的番外,来介绍李群李代数的微分和导数。
2023-01-16 16:10:19
11364
2

转载 undefined symbol问题的查找、定位与解决方法
而这块可以看到fpdf_parse_encrypt是依赖于下边的fx_crypt文件的,再看静态库,fpdf_parse_encrypt被编译成fpdfapi.a,而fx_crypt被编译进pdrm.a静态库,所以应该是fpdfapi.a要依赖于pdrm.a静态库的。ldd命令,可以查看对应的可执行文件或库文件依赖哪些库,但可执行文件或库文件要求与操作系统的编译器类型相同,即电脑是X86的GCC编译器,那么无法通过ldd命令查看ARM交叉编译器编译出来的可执行文件或库文件。
2022-12-14 14:53:39
11281
4

原创 自动驾驶-激光雷达预处理/特征提取
激光雷达作为自动驾驶最常用的传感器,经常需要使用激光雷达来做建图、定位和感知等任务。而这时候使用降低点云规模的预处理方法,可以能够去除无关区域的点以及降低点云规模。并能够给后续的PCL点云分割带来有效的收益。
2022-08-24 21:12:44
4965
2

原创 C++之生成器(builder)模式
0. 简介生成器是一种创建型设计模式, 当构建一个复杂对象时,将构建过程与表示分离。使得同样的过程创建不同的对象。生成器与其他创建型模式不同, 生成器不要求产品拥有通用接口。 这使得用相同的创建过程生成不同的产品成为可能。生成器方法通常支持方法链 (例如 someBuilder->setValueA(1)->setValueB(2)->create() ),来组成复杂的对象。相比于工厂模式专门用于生产一系列相关对象而言,生成器重点关注如何分步生成复杂对象。1. 生成器UML介绍生
2022-03-07 10:38:52
9639
4

原创 C++命名规则&书写规范
常见命名法:匈牙利命名法:基本原则是:变量名=属性+类型+对象描述\color{blue}{变量名=属性+类型+对象描述}变量名=属性+类型+对象描述,其中每一对象的名称都要求有明确含义,可以取对象名字全称或名字的一部分。命名要基于容易记忆容易理解的原则。保证名字的连贯性是非常重要的。Camel命名法:即骆驼式命名法,原因是采用该命名法的名称看起来就像骆驼的驼峰一样高低起伏。Camel命名法有两种形式:混合使用大小写字母和单词之间加下划线\color{blue}{混合使用大小写字母和单词之间加下划线}混
2021-05-12 10:42:19
6089
2
原创 AI自动化PPT生成技术深度解析:从算法到工程实践的完整技术路径
【摘要】AI技术正在革新传统PPT制作流程,通过自然语言处理、计算机视觉等技术实现自动化生成。系统采用分层架构设计,包括用户交互层、AI处理层、模板引擎层和渲染输出层,支持微服务扩展和云原生部署。核心技术包含SVG渲染引擎、流式数据处理(基于SSE协议)以及多模型融合的NLP算法。当前35%用户对AI个性化体验有需求,技术成熟度已接近商用标准,显著提升了内容生成效率与设计质量,但仍需优化复杂场景下的逻辑连贯性与视觉一致性。
2025-07-16 09:48:33
750
原创 ROS通信技术深度解析:485、CAN、I2C、Serial在工业自动化中的应用
本文探讨了工业4.0背景下ROS系统与工业通信协议的集成应用,重点分析了RS485协议在ROS中的实现方法。文章首先介绍了RS485的差分信号传输、总线拓扑等核心特性,然后详细阐述了硬件接口配置环节,包括USB-RS485转换器的识别与udev规则设置。在Modbus RTU通信实现部分,通过代码实例展示了ROS节点如何初始化Modbus上下文、配置定时数据读取以及处理控制指令。全文结合工业自动化实际需求,为开发者提供了从硬件连接到软件开发的完整技术方案,特别强调了RS485网络的终端电阻配置和电气隔离等工
2025-07-16 09:48:16
890
原创 Claude Code深度体验:重新定义AI辅助编程的边界
Claude Code:AI驱动的智能编程工具革新开发方式 Claude Code是Anthropic推出的命令行智能编程工具,通过底层架构设计提供强大的代码理解和生成能力。该工具具有三大核心优势:底层访问能力可直接操作系统资源,高度灵活性支持定制化配置,以及多层安全防护机制确保操作安全。其功能模块覆盖代码生成、文件管理、版本控制、测试调试等完整开发流程,并能通过MCP协议集成外部服务。 安装需Node.js环境,通过npm全局安装后完成OAuth认证。独特的权限系统通过配置文件管理不同操作权限,支持沙箱模
2025-07-16 09:47:51
1237
原创 Mongoose网络库深度解析:从单线程到多线程的架构演进
Mongoose是一个轻量级、跨平台的C/C++网络库,采用单线程事件循环模型,支持HTTP、WebSocket、MQTT等多种协议。其核心设计理念强调简单易用,仅需两个文件即可集成到项目中。库内置连接管理器和事件回调机制,通过非阻塞I/O处理高并发网络请求,特别适合资源受限的嵌入式环境。Mongoose解决了C/C++网络编程中的跨平台兼容性问题,避免了复杂的依赖管理,显著提升了开发效率。该库的事件驱动架构自动管理连接生命周期,开发者只需关注业务逻辑实现,无需处理底层网络细节。
2025-07-16 09:46:23
1029
原创 双缓冲与Stacktrace:C++多线程与调试的高效实践
双缓冲技术通过分离读写操作解决多线程系统中的数据竞争问题,提升性能和实时性。其核心是设置两个缓冲区,生产者写入后台缓冲区时消费者读取前台数据,避免直接冲突。典型应用包括图形渲染(消除闪烁)、音频处理和数据采集等。C++实现中可利用原子变量保证线程安全,无需显式加锁。此外,C++23引入的栈踪迹技术(std::stacktrace)为系统调试提供强大支持。双缓冲与栈踪迹的结合,使开发者能构建高效、易维护的多线程系统。
2025-07-16 09:46:05
822
原创 Autoware universe标定流程学习(番外)---最新CalibrationTools传感器校准工具
本文介绍了Autoware中的传感器校准工具安装与使用指南。新版CalibrationTools不再依赖Autoware的tf信息,仅需bag数据即可完成标定。系统要求为Ubuntu 22.04和ROS2 Humble。工具分为外部校准(如激光雷达-激光雷达、相机-激光雷达等)和内部校准(相机内参)两大类,各具不同特征类型和校准方式。架构设计上采用校准器节点与传感器校准管理器分离的模式,前者负责具体标定算法,后者提供用户界面管理项目流程。建议通过sensor_calibration_manager包实现自动
2025-07-16 09:45:41
819
原创 Autoware universe标定流程学习(二)
Autoware标定模块研究摘要:本文系统梳理了Autoware不同版本(AI、Auto和Core/Universe)的框架特点及适用环境,重点分析了标定模块的代码架构。标定模块包含8个子系统,涵盖激光雷达、相机、雷达等多传感器标定,采用地面平面提取、滤波优化等技术,通过卡尔曼滤波和收敛性检查实现精准校准。研究详细解析了外参标定器实现流程,包括点云数据处理、坐标变换发布等关键环节,为自动驾驶感知系统开发提供了重要参考。
2025-07-16 09:45:10
888
原创 “bash -e“ 的使用与shell脚本常见使用技巧
在当今的软件开发与系统运维领域,自动化是提升效率和保证一致性的关键。而 Shell 脚本,作为连接和驱动各种命令行工具的“胶水”,无疑是自动化工作流中不可或缺的一环。无论是简单的任务批处理,还是构建复杂的持续集成/持续部署(CI/CD)流水线,Shell 脚本都扮演着至关重要的角色。然而,编写健壮、可靠的 Shell 脚本并非易事。许多开发者,尤其是初学者,常常会陷入一个常见的陷阱:脚本在遇到错误时并不会如预期般停止,而是“默默地”继续执行下去,最终可能导致数据损坏、服务异常甚至系统崩溃等灾难性后果。
2025-07-16 09:44:27
625
原创 GR00T N1.5 完整使用教程---LIBERO和lerobot
NVIDIA Isaac GR00T (Generalist Robot 00 Technology) 是一个构建机器人基础模型和数据管道的研发平台,旨在加速智能、适应性强的机器人的创造。GR00T N1.5 是 NVIDIA 于2024年6月11日发布的重大更新,是对其之前发布的 GR00T N1 的全面升级,但基本还是基于之前的架构。GR00T N1.5 是一种改进的通用人形机器人开源基础模型,可以称为世界上第一个用于通用人形机器人推理和技能的开放基础模型。这个跨形体模型可以接收多模态。
2025-07-16 09:43:55
1232
原创 基于云端EC2的O3DE机器人仿真环境搭建指南
云端机器人仿真:使用O3DE与AWS EC2的实践指南 本文介绍了如何利用开源3D引擎O3DE和AWS EC2云服务搭建高保真机器人仿真环境。通过配置GPU加速的g5实例(推荐g5.4xlarge),安装远程桌面工具VNC/DCV,并设置自动会话,开发者可获得云端仿真能力。文章详细说明了EC2实例的启动参数、安全组规则(开放SSH和8443端口)及存储配置(建议120GB),同时强调成本控制的重要性。该方案支持ROS2集成,为机器人算法验证提供高效、可重复的测试环境,相比实体测试显著提升开发效率。
2025-07-10 19:16:23
879
转载 【Ubuntu】Jetson Nano 基础环境与GPU性能释放
的技术,根据需要调整各个处理器的电压、功率,并将他们的运行功率、频率限制在当前性能模式(的动态调整,并将各处理器的频率强行设定为当前性能模式下的最大值。如果之前没有设置过,它会让你直接填入密码。时,还是要输入用户名和密码才能登录。用户,执行完后默认将配置文件保存在。为了节省内存、显存,可以选择关闭。Jetson 开发板使用一种叫做。文件中,执行的时候会方便很多。当你想修改密码时,最好要使用。个人建议用户密码不要太冗长。用自己的用户名代替下面的。可以看到均已达到最大频率。)设定的最大值之下。
2025-07-07 16:46:38
60
原创 论文速读《A Survey on Vision-Language-Action Models for Autonomous Driving:视觉-语言-行动融合的智能驾驶新范式》
摘要 视觉-语言-行动(VLA)模型正推动自动驾驶技术从传统模块化架构向智能化融合系统演进。VLA模型通过统一架构整合视觉感知、语言理解和动作控制三大核心能力,实现了端到端的驾驶决策。其发展经历了四个阶段:从被动解释器到主动规划者,再到统一网络和推理增强系统。该模型的核心优势在于多模态数据融合能力,能够处理视觉、语言等多种输入,并通过先进编码器转换为统一表示。最新研究显示,VLA模型已能实现从传感器输入到驾驶动作的直接映射,并在长时程推理和细粒度决策方面取得突破。尽管仍面临挑战,VLA模型为构建更智能、可解
2025-07-07 11:21:34
1527
原创 经典文献阅读之--GaussianPretrain(统一的三维高斯表示用于自动驾驶中的视觉预训练)
摘要: 《GaussianPretrain》提出了一种创新的自动驾驶视觉预训练框架,首次将3D高斯分割(3D-GS)技术引入预训练领域。该方法通过统一表示几何与纹理信息,将3D高斯锚点概念化为激光雷达点,结合基于光线的引导和掩膜自编码(MAE)策略,实现了高效的场景理解。实验表明,该框架在nuScenes数据集上显著提升了下游任务性能:3D检测(mAP +8.99%)、高精地图(mAP +1.9%)和占用预测(mIoU +0.8%)。其核心创新包括:(1) 3D-GS的预训练范式,(2) 低内存消耗的射线投
2025-07-07 08:54:43
1397
原创 经典文献阅读之--ALOcc(基于自适应提升的3D语义占用与基于代价体积的流动预测)
ALOcc提出了一种创新的自适应提升方法,用于3D语义占用和流动预测,显著提升了自动驾驶等应用的性能。该方法通过遮挡感知机制和深度去噪技术增强2D到3D特征转换的鲁棒性,减少了对深度先验的依赖。此外,引入基于BEV的成本体积方法,结合分类-回归监督策略,优化了流动预测。共享语义原型的设计加强了2D与3D特征的语义一致性,并通过选择性采样缓解了类别不平衡问题。实验表明,ALOcc在速度和精度上达到最佳平衡,在Occ3D等基准测试中实现了2.5%的绝对性能提升,同时保持实时计算效率。代码将开源。
2025-07-07 08:54:12
1504
原创 LeRobot框架设计与架构深度剖析:从入门到精通
LeRobot 是一个由 Hugging Face 团队主导开发的、基于 PyTorch 的开源机器人学习框架。它专注于提供最先进的模仿学习 (Imitation Learning, IL) 和强化学习 (Reinforcement Learning, RL) 算法实现,这些算法经过精心设计,旨在能够高效地从演示数据中学习,并将学得的策略直接迁移和部署到真实的物理机器人上。LeRobot 的设计哲学强调易用性、模块化和可扩展性,致力于降低机器人学习的门槛,加速从研究到应用的转化过程。
2025-06-27 16:37:59
2267
原创 MCP+Cursor简介:为首次接触者打造的全面指南
MCP(Model Context Protocol,模型上下文协议)是由开发的开放标准,旨在简化AI助手与外部数据源和工具的集成,特别是针对大型语言模型(LLMs)。。它提供了一个通用的标准化框架,使AI应用程序能够安全高效地访问和与各种系统(如Google Drive、Slack、GitHub甚至本地文件)交互。
2025-06-27 16:37:41
1734
原创 具身多模态大模型 (EMLM) 的崛起--感知、认知与行动的深度融合
近年来,大模型与多模态感知系统(如具身智体)的集成带来突破性模型的开发,这些模型能够处理日益复杂的任务。然而,具有大模型的具身智能领域仍处于早期阶段,仍存在一些挑战。这些包括增强模型的可扩展性和泛化能力,提高处理复杂任务的能力,以及提高具身智体与其环境更有效交互的能力。尽管该领域已经取得了重大进展,但目前关于 EMLM 的评论论文中仍然存在几个关键问题。首先,大多数现有评论主要关注自然语言处理中的传统大模型,如 LLM、大型视觉模型和语言视觉模型,而不是解释具身智体与大模型的集成。
2025-06-27 16:37:14
1706
原创 基于NuScenes数据集构建高质量多模态VLM训练数据
NuScenes是一个由Motional(前身为nuTonomy)发布的自动驾驶数据集,包含1000个驾驶场景,每个场景20秒,共140万个3D边界框标注和1.4亿个3D点云点。该数据集提供了多种传感器数据,包括6个摄像头、1个激光雷达和5个雷达的数据,以及详细的3D对象标注。利用这一丰富的数据集,我们可以生成高质量的训练样本,帮助多模态LLM理解交通场景、识别道路上的各类对象,并进行准确的场景描述。
2025-06-27 16:36:54
1437
原创 MCP(Model Context Protocol)详解:AI系统与外部世界的桥梁
MCP(Model Context Protocol,模型上下文协议)是由Anthropic公司于2024年11月推出并开源的一种通信协议。它旨在建立大型语言模型(LLM)与外部数据源及工具之间的安全双向链接,让AI模型能够以标准化的方式与各种数据源和工具进行交互。MCP的核心理念是提供一种统一的集成方式,让AI模型能够安全、高效地访问和操作用户本地或远程的各种数据和服务,而无需将敏感数据上传至第三方服务器。正如官方所描述的那样,MCP就像是AI应用的"USB-C接口",提供了一种标准化的连接方式。在MC
2025-06-27 16:36:30
1338
原创 CARLA ROS Bridge 安装和使用
自2017年发布以来,逐步成为主流的自动驾驶仿真器。许多在顶级会议(如CVPR、ICCV、NIPS等)上发布的自动驾驶相关算法都是在CARLA仿真器上进行验证的,其完备性与稳定性已被充分证明。与此同时,ROS(Robot Operating System)是广泛使用的机器人系统,知名的开源自动驾驶框架Autoware便是基于ROS开发的。CARLA ROS Bridge恰好成为了ROS与CARLA之间的桥梁,它通过ROS实现了与仿真场景的充分交互,非常适合算法验证与评估。
2025-06-27 16:36:15
1566
原创 Pyrefly: Meta开源的高性能Python类型检查器使用指南
作为Python开发者,我们经常会遇到因类型错误导致的运行时问题。虽然Python的动态类型特性带来了极大的灵活性,但在大型项目中也可能成为维护的噩梦。近日,Meta(原Facebook)发布了一款全新的Python类型检查工具Pyrefly,它不仅能提供超快的类型检查,还集成了现代化的IDE支持。本文将详细介绍Pyrefly的特点和使用方法。你可以在项目根目录创建。
2025-06-27 16:35:39
1020
原创 Autoware universe标定流程学习(一)
Autoware自动驾驶框架版本演进与安装指南 摘要:Autoware作为开源自驾驶框架,经历了多个版本迭代。Autoware.AI基于ROS1已停止维护,Autoware.Auto基于ROS2重写但开发门槛较高。当前主要版本Autoware.core/universe基于ROS2,分为稳定版和开发者版本。文章详细介绍了各版本特性:Autoware.AI支持ROS1,Autoware.Auto/Autoware.universe支持ROS2(Foxy/Galactic/Humble等)。同时提供了基于Doc
2025-06-27 16:35:16
1430
原创 论文速读《AutoVLA:统一推理与行动的端到端自动驾驶新突破》
摘要 UCLA研究团队提出AutoVLA,一种创新的视觉-语言-动作模型,用于端到端自动驾驶。该模型通过统一的自回归框架将场景推理与轨迹规划融合,采用离散化token化方法将连续轨迹转化为语言模型可处理的序列。创新性地引入自适应推理机制,结合"快速思维"(直接动作生成)和"慢速思维"(结构化推理)两种模式,根据场景复杂度动态调整策略。模型基于Qwen2.5-VL-3B架构,整合多视角视频、导航指令和车辆状态作为输入,通过强化微调优化性能。实验表明AutoVLA在复杂场
2025-06-27 15:33:31
1531
原创 论文速读《P3Nav:革命性的具身导航统一框架》
美团团队提出的P3Nav框架创新性地融合感知、规划和预测三大能力,为具身导航任务带来突破性进展。该框架通过多任务协作策略联合训练导航和具身问答任务,显著提升了性能表现。其核心贡献包括提出统一框架设计、引入自适应3D感知历史采样策略处理冗余信息,以及在CHORES-S基准测试上达到75%成功率的新纪录。P3Nav采用先进的视觉编码器、UVFormer架构和大型语言模型,实现了更高效、可解释的机器人导航系统。这一研究为开放世界环境下的复杂导航任务提供了全新解决方案。
2025-06-27 14:12:45
1237
ROS 导航功能调优指南∗.pdf
2022-01-07
小觅摄像头Opencv处理
2019-07-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人