整理了一下机器学习-算法工程师需要掌握的机器学习基本知识点,并附上了网上笔者认为写得比较好的博文地址,供参考。(持续更新)
文章目录
机器学习相关基础概念
Variance(方差)与bias(偏差)
https://www.zhihu.com/question/27068705
常用性能指标
生成模型与判别模型
https://www.cnblogs.com/zeze/p/7047630.html
集成学习:Bagging、Boosting、Stacking
https://www.sohu.com/a/167812554_465975
https://www.cnblogs.com/liuwu265/p/4690486.html
Logistic Regression
https://tech.meituan.com/intro_to_logistic_regression.html
https://blog.csdn.net/jediael_lu/article/details/77852060
http://blog.csdn.net/feilong_csdn/article/details/64128443
GBDT(梯度提升树)、 XGboost
https://www.cnblogs.com/pinard/p/6140514.html
https://www.zhihu.com/question/41354392
SVM 与 感知机
感知机基本概念与原理
http://blog.csdn.net/dream_angel_z/article/details/48915561
SVM机器学习面试相关题目
http://blog.csdn.net/szlcw1/article/details/52259668
Naïve Bayes(朴素贝叶斯)
原理推导
http://blog.csdn.net/lrs1353281004/article/details/79437016
原理与应用
http://blog.csdn.net/tanhongguang1/article/details/45016421
实例
http://blog.csdn.net/fisherming/article/details/79509025
梯度下降法与牛顿法
常见聚类方法
监督学习、无监督学习、半监督学习
L1正则化与L2正则化
经验风险最小化(ERM)与结构风险最小化(SRM)
极大似然估计(MLE)与最大后验概率估计(MAP)
http://blog.csdn.net/lin360580306/article/details/51289543
https://www.cnblogs.com/sylvanas2012/p/5058065.html
迁移学习
https://www.zhihu.com/question/41979241
强化学习
LDA 、PCA
https://www.cnblogs.com/pinard/p/6244265.html
类别不均衡问题
深度学习相关
神经网络(反向传播、梯度消失、dropout)
CS231n课程笔记翻译:反向传播笔记
梯度消失与梯度爆炸
http://blog.sina.com.cn/s/blog_6e32babb0102y1om.html
http://blog.csdn.net/qq_25737169/article/details/78847691
dropout
http://blog.csdn.net/stdcoutzyx/article/details/49022443
batch normalization
https://zhuanlan.zhihu.com/p/34879333
https://www.cnblogs.com/guoyaohua/p/8724433.html
CNN
RNN、LSTM
http://blog.csdn.net/hjimce/article/details/49095371
http://lib.csdn.net/article/deeplearning/45510
二者在梯度消失/爆炸问题上的不同表现
https://zhuanlan.zhihu.com/p/28687529
https://zhuanlan.zhihu.com/p/28749444
GAN
http://36kr.com/p/5086889.html
https://www.leiphone.com/news/201701/Kq6FvnjgbKK8Lh8N.html