梯度下降算法是一种一阶迭代优化算法,主要用于求解最小化目标函数的问题,广泛应用于机器学习和人工智能中的参数优化。以下是对梯度下降算法工作原理及其变体的详细解释:
一、梯度下降算法工作原理
梯度下降算法的核心原理是利用负梯度方向作为搜索方向。在多元函数的某一点处,函数值沿着负梯度方向下降最快。因此,算法通过不断地沿着负梯度方向更新参数,可以逐渐减小函数值,直到达到最小值。具体步骤如下:
- 选择初始点:在函数定义域内任选一个初始点作为参数的起始值。
- 计算梯度:在当前点计算目标函数的梯度,即损失函数相对于参数的导数。梯度是一个向量,其每个分量分别是函数对各个参数的偏导数。
- 参数更新:根据梯度和一个预先设定的学习率来更新参数。学习率控制着每次参数更新的步长。参数更新公式为:θ_new = θ_old - η∇f(θ_old),其中θ表示参数向量,η表示学习率,∇f(θ_old)表示在θ_old处的梯度。
- 迭代:重复步骤2和3,直到满足停止条件,如达到最大迭代次数或梯度足够小。
二、梯度下降算法的变体
1. 批量梯度下降(Batch Gradient Descent)
- 工作原理:在每次迭代中使用整个训练数据集来计算目标函数的梯度,然后根据这个梯度来更新模型参数。
- 优点:每次更新都是基于整个训练数据集,因此可以保证收敛到全局最小值(在凸函数的情况下)。
- 缺点:计算量大,特别是对于大规模数据集,每次迭代都需要计算整个数据集的梯度,这可能会非常耗时。