5.18-AI分析师

强化练习1 神经网络训练案例(SG)

#划分数据集 #以下6行需要背  路径根据考试路径调整
from torchvision import datasets
folder = datasets.ImageFolder(root='C:/水果种类智能训练/水果图片', transform=trans_compose)
n  = len(folder)
n1 = int(n*0.8)
n2 = n - n1
train, test = random_split(folder, [n1, n2])

#############################################

#训练并保存模型
import torchmetrics

lossf = nn.CrossEntropyLoss()
optimizer =  torch.optim.Adam(model.parameters(), lr=0.01)
metricsf =  torchmetrics.Accuracy(task='multiclass', num_classes=len(folder.classes))

for i in range(1):
    for batchX, batchY in data_loader:
        #以下17行需要背  中文是对应题目的要求可以不背
        device = torch.device("cpu")
        batchX = batchX.to(device)
        batchY = batchY.to(device)
        model = model.to(device)
        # 清零梯度
        optimizer.zero_grad()
        # 前向传播
        outputs = model(batchX)
        # 计算损失
        loss = lossf(outputs, batchY)
        # 反向传播
        loss.backward()
        # 更新参数
        optimizer.step()
        # 计算准确率
        preds = torch.argmax(outputs, dim=1)
        metricsf.update(preds, batchY)
      
    # 每个 epoch 结束后打印损失和准确率
    epoch_loss = loss.item()
    epoch_accuracy = metricsf.compute()
    print(f'Epoch {i + 1}, Loss: {epoch_loss:.4f}, Accuracy: {epoch_accuracy:.4f}')
    # 重置评估指标
    metricsf.reset()
torch.save(model.state_dict(), '2-2model_test.pth')
print("模型已保存为 2-2model_test.pth")

########################################

# 下面Resize函数需要调整
trans_compose = transforms.Compose([
    transforms.Resize((64, 64)),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

强化练习2 简答题

数据采集培训大纲(以下为参考,自己要修改,与下面一致的会造成雷同)

  1. 基础认知:明晰数据采集概念、重要性与应用场景。
  2. 方法技巧:讲授多种采集方式,涵盖网络、传感器等,分享实操窍门。
  3. 工具运用:熟练掌握 Excel、Python 等工具用于数据获取与整理。

常见问题及解决方法(选2条背)

  1. 目标不明确
    • 问题:未清晰界定采集数据的用途与范围,导致收集大量无关数据,遗漏关键信息。比如市场调研时,不清楚要分析用户哪类消费行为,盲目收集。
    • 解决方法:项目启动前,组织跨部门会议,与业务、分析团队深入沟通,基于业务需求和分析目的,详细梳理数据需求清单,明确数据用途、范围、字段及预期成果。
  2. 样本偏差
    • 问题:选取样本缺乏代表性,如调查城市居民出行方式,仅在高档社区采样,无法反映整体情况。
    • 解决方法:运用科学抽样方法,像分层抽样,按城市区域、收入水平等分层后随机抽取;扩大样本覆盖范围,涵盖不同特征群体,必要时用统计方法评估样本代表性。
  3. 数据来源不可靠
    • 问题:采用劣质数据源,像某些非官方网站数据,可能存在错误、过时或被篡改,影响数据质量。
    • 解决方法:优先选用官方机构、权威数据库等可靠数据源;对新数据源,先小范围验证数据准确性,对比多个来源数据,分析差异。

强化练习3 人工智能系统设计

    def __init__(self):
        super(MyNet, self).__init__()
        self.fc1 = nn.Linear(14, 128)
        self.bn1 = nn.BatchNorm1d(128)
        self.relu = nn.ReLU()
        # 第二层
        self.fc2 = nn.Linear(128, 256)
        self.bn2 = nn.BatchNorm1d(256)
        self.relu = nn.ReLU()
        # 第三层
        self.fc3 = nn.Linear(256, 2)
    def forward(self, x):
        x = self.fc1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.bn2(x)
        x = self.relu(x)
        out = self.fc3(x)
        return out

流程图:

读取XX数据

检查数据是否正确

数据清洗

数据分析处理

模型加载

根据模型进行推理

输出响应结果

结束

强化练习4 gs程序分析

三种网络爬虫的主要搜索策略及特点

广度优先 (BFS)    
    特点:通用搜索引擎、大规模抓取
    优点:覆盖广、避免陷入深层结构、并行友好    
    缺点:可能抓取较多低质量页面
深度优先 (DFS)
    特点:静态网站、专题爬取
    优点:可快速深入特定分支
    缺点:易陷入循环、覆盖效率低
最佳优先
    特点:聚焦爬虫、垂直搜索引擎
    优点:高效获取高价值页面
    缺点:计算复杂、可能遗漏相关页面

流程图完善

  • (a)处:判断文件是否为图像文件(可通过文件扩展名判断是否为常见图像格式,如.png、.jpg 等 )。
  • (b)处:判断图像文件是否为.png 格式。(tif根据题目要求改)
  • (c)处:判断图像文件分辨率是否为  x x y(根据题目要求改) 。

问题及改善(此题用自己的话回答 不能直接照抄下面的)

问题:严格按格式和分辨率筛,会丢有用图像致数据不足,且仅靠扩展名判格式易误筛。

改进:使用Opencv库进行图像处理

for filename in os.listdir(input_folder):# 遍历输入文件夹中的所有文件
    if filename.lower().endwith('png'):
        image_path = os.path.join(input_folder, filename)
        with Image.open(image_path) as img:
            if img.size != (100, 100)
                continue
            output_path = os.path.join(output_folder, filename)
            img.save(output_path)
print('处理完毕')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值