防止过拟合:Dropout和正则化

本文介绍了一种改进的Dropout技术——DropBlock。不同于传统的Dropout方法随机丢弃单个神经元,DropBlock通过在特征图上随机选择一块区域并将其全部置零来实现更高效的训练效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dropout

按一定概率随机丢点东西,根据丢什么分为不同方法,目前比较合理的是DropBlock
在这里插入图片描述
就是每层feature map随机采样一个区域置0,当然也可能没有区域被dropout

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值