Seesaw Loss:目标检测长尾分布loss

参考Seesaw Loss:一种面向长尾目标检测的平衡损失函数 - 王佳琦的文章 - 知乎
https://zhuanlan.zhihu.com/p/339126633

上面文章讲过的这里就不赘述了,主要解释一些东西。
Motivation中,“来自头部类别的样本会对尾部类别施加过量的负样本梯度淹没了来自尾部类别自身的正样本梯度
要理解这句话,得先理解loss反向传播的过程

为啥头部类别还能对尾部类别施加梯度呢?

以全连接为例
在这里插入图片描述
设1为头部类别。现在就是头部类别的预测情况,这个样本的gt为头部类别,Loss为交叉熵损失,所以为-log(0.7)
同时交叉熵损失函数对预测结果求偏导:
在这里插入图片描述
ddxloss=1/x\frac{\mathrm{d} }{\mathrm{d} x}loss=1/xdxdlos

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值