Mask rcnn调参

本文探讨了深度学习模型训练的关键参数设置,包括学习率0.001,训练轮数根据模型状态选择20-40轮,MIN_DIM为960保持图像比例,ROI数量依据目标数量设定,IMAGE_RESIZE_MODE选择“square”或“crop”以适应不同的训练策略。这些参数的优化对于模型性能至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.学习率 我是设的0.001
2.训练轮数 如果是之前训好的模型,那么20/40,训到loss降到0.6左右应该比较合适
3.MIN_DIM,短边的长度,我这里是用的原图训,就960了,长边1280,要求能整除64
4.TRAIN_ROIS_PER_IMAGES。这个比较关键,训练和测试不一样。这个值是指提取的ROI的数量,也就是候选框的数量,最好先大概看一下一张图上有多少个目标,然后x3。如果训练用了crop,则训练和测试这个参数要做对应调整
5.IMAGE_RESIZE_MODE,一般用默认的“square”,如果要做random crop就改为"crop",会从原图上crop下MIN_DIMxMIN_DIM大小的图训练,Mask也会做相应crop

### sd-maskrcnn 使用教程 sd-maskrcnn 是基于 PyTorch 实现的一个实例分割模型,该工具包提供了 Mask R-CNN 的实现方式。为了更好地理解和应用这个库,下面将详细介绍其安装、配置以及基本使用方法。 #### 安装环境准备 对于 sd-maskrcnn 库的安装,推荐先创建一个新的 Python 虚拟环境来隔离依赖项。可以利用 `conda` 或者虚拟环境工具如 `venv` 来完成这一步骤[^1]: ```bash # 创建并激活 conda 环境 (假设已安装 Anaconda/Miniconda) conda create --name maskrcnn python=3.8 conda activate maskrcnn ``` 接着按照官方文档中的指导安装必要的依赖软件包,包括但不限于 NumPy, OpenCV 和 CUDA 工具链(如果打算在 GPU 上运行的话)。特别需要注意的是要确保所使用的 PyTorch 版本与本地硬件兼容[^2]。 #### 下载项目源码 可以通过 Git 命令克隆仓库到本地机器上以便进一步操作: ```bash git clone https://github.com/facebookresearch/detectron2.git cd detectron2 pip install -e . ``` 这里假定 sd-maskrcnn 构建于 Detectron2 之上;因此上述命令实际上是从 Facebook AI Research 提供的 Detectron2 GitHub 存储库获取最新版本的代码,并通过 pip 进行编辑模式下的安装[^3]。 #### 配置文件说明 大多数情况下,默认参数已经能够满足一般需求,但对于特定应用场景可能还需要调整一些超参设置。这些都可以在 YAML 格式的配置文件中找到对应的选项来进行修改。例如学习率调度器的选择、批量大小设定等都可在相应部分指定[^4]。 #### 源码结构概览 整个项目的目录布局遵循了良好的模块化设计原则,主要分为以下几个核心组件: - **datasets**: 数据集处理逻辑所在位置; - **modeling**: 含有网络架构定义的地方; - **engine**: 训练循环和其他执行流程控制单元的位置; - **config**: 如前所述保存着各种可调用参数的信息。 了解以上几个关键组成部分有助于深入理解如何自定义扩展此框架以适应不同的研究方向或实际问题解决场景[^5]。 #### 示例训练脚本 最后给出一段简单的训练过程样例代码作为参考,帮助快速启动实验工作: ```python from detectron2.engine import DefaultTrainer from detectron2.config import get_cfg import os cfg = get_cfg() cfg.merge_from_file("./configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # 加载预设配置 os.makedirs(cfg.OUTPUT_DIR, exist_ok=True) trainer = DefaultTrainer(cfg) trainer.resume_or_load(resume=False) trainer.train() ``` 这段程序展示了怎样加载默认配置文件并通过 API 接口开始一次完整的训练周期。当然,在正式投入使用前还需根据具体任务特点做适当改动优化性能表现[^6]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值