Balanced Multimodal Learning via On-the-fly Gradient Modulation(CVPR2022 oral)

paper: https://arxiv.org/pdf/2203.15332.pdf


一句话总结:解决多模态训练时主导模态训得太快导致辅助模态没训充分的问题
交叉熵损失函数:
在这里插入图片描述
其中,f(x)为
在这里插入图片描述
解耦一下:
在这里插入图片描述
其中,a表示audio模态,v表示visual模态,f(x)为softmax前的两个模态联合输出的logits。在这个任务中a为主导模态,即对于gt类别,a模态输出的logits更大
WaW^aWa为例,L对WaW^a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值