背景
这是一篇口水记录文,存在的主要价值是帮我拿一个新的徽章。
机缘
我的第一篇博客是一个 debug 分享:《Obsidian学习笔记-Annotator插件的安装与使用》,当时想系统性总结占卜知识于是开始自学慕名已久的 Markdown 工具 Obsidian。尝试很多操作后终于摸索清楚了插件 Annotator 的安装和激活使用步骤,因为当时 CSDN 上并没有清晰明确的相关解决方案,所以一时兴起写下了经验分享。
很幸运的是我的第一篇文章就反响很好(对于一个博客小白来说),这篇文章至今依然在给我带来访问和粉丝。同时感谢官方的新手扶持政策,周期创作流量券对于没有粉丝基础、垂直领域不明确的小白来说真的十分雪中送炭。总之,我的博客之旅就这样在正反馈和激励的包围下开始了。
收获
从发布第一篇博客至今共128天,我创作了 85 篇博文,4 个平均质量分 90 以上专栏,也收获了 2200+ 的粉丝关注。
在众多数据中我最喜欢的除了关注,就是【代码片分享次数】,自己写的代码获得分享真是一个格外让人有成就感的事情。
正如作者简介的签名,我目前的本职工作是 SAP 实施顾问。由于发表企业管理软件详细操作的文章,也吸引来了一些相关项目需求咨询,真的是很意外的收获。(btw,如果读者老板的企业有 SAP 的标准功能实施可以私信作者哦。)
成就
从文章结构和代码的完整性上,我最喜欢的文章是:《【机器学习】Lesson3 - 逻辑回归(LR)二分类》。
其中最核心的代码片段当然是逻辑回归的建模过程啦:
# 使用 scikit-learn 的逻辑回归模型
model = LogisticRegression(
max_iter=10000,
penalty='l2',
#C=0.1,
#solver='liblinear',
class_weight="balanced"
)
model.fit(X_train, y_train)
# 预测
y_pred_test = model.predict(X_test)
print(classification_report(y_test,y_pred_test))
y_pred_train = model.predict(X_train)
print(classification_report(y_train,y_pred_train))
confusion_matrix(y_train,y_pred_train)#生成混淆矩阵
#画热力图
sns.heatmap(confusion_matrix(y_test,y_pred_test),annot=True,fmt="d")
accuracy_score(y_pred_test,y_test)#准确率
f1_score(y_pred_test,y_test)#精确率和召回率的调和平均数
# 从负类,计算模型精确率和召回率
precision_score(y_pred_test,y_test,pos_label=0)#精确率
recall_score(y_pred_test,y_test,pos_label=0)#召回率
print(model.coef_)
print(model.intercept_)
# 显示模型系数
coefficients = pd.DataFrame(model.coef_.flatten(), index=X.columns, columns=['Coefficient'])
print(coefficients)
pd.DataFrame(model.coef_,columns=X.columns).T.plot(kind="barh")#显示系数大小
model.predict_proba(X_test)
model.predict(X_test)
# 从正类,计算精确率和召回率
precision = precision_score(y_test, y_pred_test,pos_label=1)
recall = recall_score(y_test, y_pred_test,pos_label=1)
print(f"Precision: {precision}")
print(f"Recall: {recall}")
憧憬
憧憬的话,那就希望在未来成为优质创作者吧。
共勉