
caffe
每天都要深度学习
Machine learning and deep learning.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Caffe源码理解(1)——caffe框架梳理
Caffe是深度学习的一种框架,由C++和Python编写,底层是C++源码。一、Caffe-master源代码大框架: 关键文件如下: - data:用于存放caffe-master中程序所需要的原始数据(图片等) - docs:用于存放帮助文档 - examples:用于存放代码 - include/caffe:用于存放头文件.hpp(非常重要!!) - matlab:用于原创 2017-06-14 22:50:56 · 2019 阅读 · 0 评论 -
Caffe源码理解(2)——超级完整版教程:如何自定义一个新的层结构并重新编译Caffe
caffe源码理解之如何自定义一个层结构并重新编译Caffe完整教程。原创 2017-09-26 17:27:14 · 2420 阅读 · 2 评论 -
二分类问题打标签label以及求loss的选择——从accuracy底层实现代码理解
使用caffe做二分类问题的时候,对于loss层的选择主要有以下两种常用的方法:1、sigmoid cross entropy 最后一层fc的输出设置为一个结点,输入的label是0或1。2、softmax with loss 最后一层fc的输出设置为两个结点,输入的label依旧是0或者1。 这是由于softmax是用于处理多分类问题,需要上一层的输出个数同分类数目相同,而损失层会将labe原创 2017-08-06 19:43:45 · 6506 阅读 · 0 评论 -
Caffe:如何运行一个pre-train过的神经网络——以VGG16为例
实验环境: Ubuntu 14.04所需环境: Caffe(GPU) Python2.7 JUPYTER NOTEBOOK所需依赖包: numpy matplotlib skimage h5py本次实验采用的网络介绍: 在ICIR论文《VERY DEEP CONVOLUTIONAL NETWORK SFOR LARGE-SCALE IMAGE RECOGNITION》...原创 2017-07-21 20:38:34 · 4913 阅读 · 0 评论