第十周 SENet

这篇博客介绍了SENet(Squeeze-and-Excitation Networks)中的注意力机制,讨论了Reduction ratio的作用,并探讨了SE-Module在ResNet中的四种嵌入方式。SEBlock通过生成通道维度的权重向量,增强了模型的表征能力,提高了模型性能。此外,博主分享了从SENet论文中获得的启示,包括在不同数据集上验证模型、优化Reduction ratio、理解低维嵌入以及训练技巧等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1:文字回答:用自己的语言描述注意力机制的方式(最好有图)?
答:注意力机制的方式描述如下:
首先先来了解一下注意力的概念,注意力就是指人的心理活动指向和集中于某种事物的能力。比如说,第一眼看到一只狗,一只猫,看到猫狗的过程就是一个注意力机制的过程。当你注意力在狗的时候,你的大脑会给与该区域更多的关注。

在这里插入图片描述
注意力机制来源于人类大脑,并被引入NLP技术中,然后才被运用到CV领域。从数学角度看,注意力机制即提供一种权重模式进行计算。神经网络中,注意力机制即利用一些网络层计算得到特征图对应的权重值,对特征图进行“注意力机制”。

2:文字回答:Excitation中的Reduction ratio是什么意思?有什么作用?
答:Reduction ratio是一个重要的参数,其中关于r的有对比实验,经验值为16,其作用是控制第一个全连接层神经元个数,进而影响SE Block的参数量。

3:文字回答:SE-Module嵌入ResNet中有几个方式?
答: SE-Module嵌入ResNet有四种方式,如下图所示:
在这里插入图片描述
针对这四种方式,实验表明精度差别不大,从而得出结论:SE Block很鲁棒。

4:文字回答:读完该论文,对你的启发点有哪些?
答:1. 本文提出SE模块生成通道维度的权重向量,用于特征“重构”,实现强调重要特征,忽略不重要特征,增强模型表征能力,提高模型性能。
2. 设计一系列实验验证SE Block的有效性,特别是Ablation Study方法十分指的借鉴学习。
3. 本文研究通道之间的关系,表明模型的发展已

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值