题目:
小Hi、小Ho还有被小Hi强拉来的小Z,准备组队参加一个智力竞赛。竞赛采用过关制,共计N个关卡。在第i个关卡中,小Hi他们需要获得Ai点分数才能够进入下一关。每一关的分数都是独立计算的,即使在一关当中获得超过需要的分数,也不会对后面的关卡产生影响。
小Hi他们可以通过答题获得分数。答对一道题获得S点分数,答错一道题获得T点分数。在所有的N个关卡中,小Hi他们一共有M次答题机会。在每个关卡中,都可以在累计答题次数不超过M的情况下使用任意次的答题机会。
那么现在问题来了,对于给定的N、M、S、T和A,小Hi他们至少需要答对多少道题目才能够完成所有的关卡呢?
输入
每个输入文件包含多组测试数据,在每个输入文件的第一行为一个整数Q,表示测试数据的组数。
每组测试数据的第一行为四个正整数N、M、S和T,意义如前文所述。
第二行为N个正整数,分别表示A1~AN。
对于40%的数据,满足1<=N,M<=100
对于100%的数据,满足1<=N,M<=1000,1<=T<S<=10,1<=Ai<=50
对于100%的数据,满足1<=Q<=100
输出
对于每组测试数据,如果小Hi他们能够顺利完成关卡,则输出一个整数Ans,表示小Hi他们至少需要答对的题目数量,否则输出No。
-
样例输入
-
1 2 10 9 1 12 35
样例输出5 -
解答:利用区间dp + 枚举
#include <iostream>
#include <cstdio>
#include <map>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
int dp[1001][1001];
const int inf=0x7f7f7f7f;
int n,m,s,t,num,a[1001];
int main()
{
int q;
scanf("%d",&q);
while(q--)
{
memset(dp,inf,sizeof(dp));
scanf("%d%d%d%d",&n,&m,&s,&t);
for(int j=0;j<=m;j++)
{
dp[0][j]=0;
}
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
if(a[i]%s==0)num=a[i]/s;
else num=a[i]/s+1;
for(int k=0;k<=num;k++)
{
int x=a[i]-k*s;
if(x>0)
{
if(x%t==0)x=x/t;
else x=x/t+1;
}
else x=0;//一开始这个地方没写还wa了几发,额的罚时啊啊啊啊
for(int j=0;j<=m;j++)
{
if(j+k+x<=m)
{
dp[i][j+k+x]=min(dp[i][j+k+x],dp[i-1][j]+k);
}
}
}
}
int ans=inf;
for(int j=0;j<=m;j++)
{
ans=min(ans,dp[n][j]);
}
if(ans>m)cout<<"No"<<"\n";
else cout<<ans<<"\n";
}
return 0;
}