mapreduce执行过程

MapReduce是一种用于处理大规模数据的编程模型,其主要步骤包括input、map、shuffle、reduce和output。input阶段,HDFS上的大文件被拆分成128M的小文件,并转化为键值对;map阶段,每个数据块调用map方法生成新的键值对;shuffle阶段,键值对进行排序和分组,相同key的数据放在一起;reduce阶段,每个分组调用reduce方法,再次构建键值对;output阶段,将结果写回到HDFS。该模型广泛应用于大数据处理中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、执行过程

mapreduce执行过程

MapReduce工作机制

MapReduce过程分为
input
map
shuffle
reduce
output

1.input:首先从HDFS上面读取文件,同时将大文件拆分成小文件(128M),与此同时将并组成键值对的形式
2.map:将input传送过来的每个数据块调用一次map方法,并构建新的键值对
3.shuffle:排序:按照键值对做一个排序
分组:将key值相同的数据放到一个迭代器中
4.reduce:每个分组后的数据调用一次reduce方法,构建新的键值对
5.output:将reduce传递过来的文件合成一个大文件,写到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值