分治算法

本文深入解析分治算法,一种通过将问题分解成若干小问题并独立求解,再合并结果来解决问题的方法。讨论了分治算法的条件,如原问题与子问题的相似性,子问题的独立性,分解终止条件及合并操作。并通过实例,如归并排序、二维平面上点对距离计算等,展示了分治算法的实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是分治算法?

顾名思义,分治算法就是分而治之,也就是将原问题划分成n个规模较小的,并且结构与原问题相似的子问题,递归的解决这些子问题,然后再合并其结果,就得到原问题的解。

 

分治算法是一种处理问题的思想递归是一种编程技巧

 

分治算法的递归操作

1.分解

2.解决

3.合并

 

举个例子,归并排序

 

分治算法的条件

1.原问题与分解成的小问题具有相同的模式

2.原问题分解成的子问题可以独立求解,子问题之间没有相关性,这一点是分治算法跟动态规划的明显区别

3.具有分解终止条件

4.可以将子问题合并成原问题,而这个合并操作的复杂度不能太高,否则就起不到见效算法总体复杂度的效果了

 

分治算法实际的举例

一组无需数组中的逆序度的计算?

利用归并排序中merge的环节。

 

二维平面上有n个点,如何快速计算出两个距离最近点对?

将二维平面分成三个部分,左中右。然后对于左和右分别求最小的距离d1,d2,则左和右的最小值是d = min(d1,d2)。

根据这个条件,我们可以对得到中区域的大小是一个横坐标为(m-d,m+d),纵坐标是(y+d)的矩形框。

在这个矩阵框中,我们可以得到常数项的比较个数,即不超过8个的点。

基于以上的结论,我们可以将P1,P2中的点按y的升序排列,顺序处理P1和P2中的点p(x,y)在y坐标区间中最多取8个点,计算其与点p的距离。

 

有两个n*n的矩阵A,B,如何快速求解两个矩阵的乘积C=A*B?

矩阵分块

 

参考

分治法与最近点对问题:https://blog.csdn.net/cxh_1231/article/details/83061901

初学算法-分治法求平面上最近点对(Closest Pair)-HDU 1007:https://my.oschina.net/bgbfbsdchenzheng/blog/498823

算法导论求n个点的最小距离:https://blog.csdn.net/Job_yi/article/details/9615471

平面最近点距离问题(分治法):https://blog.csdn.net/hnu2012/article/details/70894678

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值