以下是本地部署DeepSeek模型的详细步骤(以Windows系统为例):
一、环境准备
-
安装Python 3.8+
- 官网下载安装包:https://www.python.org/downloads/
- 安装时勾选"Add Python to PATH"
-
安装CUDA驱动(仅限NVIDIA显卡用户)
- 打开NVIDIA控制面板 → 系统信息 → 查看支持的CUDA版本
- 到官网下载对应版本:https://developer.nvidia.com/cuda-toolkit
二、依赖安装
- 创建虚拟环境(CMD执行):
python -m venv deepseek_env
deepseek_env\Scripts\activate
- 安装基础依赖:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # GPU版本
# 或 pip install torch torchvision torchaudio # CPU版本
pip install transformers sentencepiece accelerate
三、模型下载
- Hugging Face下载(需注册账号):
git lfs install
git clone https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat
- (备选)国内镜像下载:
- 访问:https://www.modelscope.cn/models
- 搜索"deepseek"选择合适模型
四、运行推理
创建demo.py
文件:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "deepseek-llm-7b-chat" # 修改为实际路径
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
input_text = "帮我写个Python排序函数"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
五、启动程序
python demo.py
常见问题处理
-
显存不足:
- 添加参数:
load_in_8bit=True
(需安装bitsandbytes) - 或使用
device_map="cpu"
进行CPU推理
- 添加参数:
-
下载中断:
git lfs fetch --all git lfs checkout
-
依赖冲突:
pip install --force-reinstall [包名称]
注意事项:
- 7B模型需要至少16GB内存(GPU版需8GB显存)
- 首次运行会自动下载分词器文件(约5分钟)
- 建议使用VSCode等IDE便于调试
如需更简化方案,可尝试使用Ollama等工具一键部署:
curl https://ollama.ai/install.sh | sh
ollama run deepseek-chat