Windows系统快速本地部署deepseek(详细教程)

以下是本地部署DeepSeek模型的详细步骤(以Windows系统为例):

一、环境准备

  1. 安装Python 3.8+

    • 官网下载安装包:https://www.python.org/downloads/
    • 安装时勾选"Add Python to PATH"
  2. 安装CUDA驱动(仅限NVIDIA显卡用户)

    • 打开NVIDIA控制面板 → 系统信息 → 查看支持的CUDA版本
    • 到官网下载对应版本:https://developer.nvidia.com/cuda-toolkit

二、依赖安装

  1. 创建虚拟环境(CMD执行):
python -m venv deepseek_env
deepseek_env\Scripts\activate
  1. 安装基础依赖:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118  # GPU版本
# 或 pip install torch torchvision torchaudio  # CPU版本
pip install transformers sentencepiece accelerate

三、模型下载

  1. Hugging Face下载(需注册账号):
git lfs install
git clone https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat
  1. (备选)国内镜像下载:
    • 访问:https://www.modelscope.cn/models
    • 搜索"deepseek"选择合适模型

四、运行推理

创建demo.py文件:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "deepseek-llm-7b-chat"  # 修改为实际路径
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")

input_text = "帮我写个Python排序函数"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

五、启动程序

python demo.py

常见问题处理

  1. 显存不足:

    • 添加参数:load_in_8bit=True(需安装bitsandbytes)
    • 或使用device_map="cpu"进行CPU推理
  2. 下载中断:

    git lfs fetch --all
    git lfs checkout
    
  3. 依赖冲突:

    pip install --force-reinstall [包名称]
    

注意事项:

  1. 7B模型需要至少16GB内存(GPU版需8GB显存)
  2. 首次运行会自动下载分词器文件(约5分钟)
  3. 建议使用VSCode等IDE便于调试

如需更简化方案,可尝试使用Ollama等工具一键部署:

curl https://ollama.ai/install.sh | sh
ollama run deepseek-chat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值