- 博客(149)
- 收藏
- 关注
原创 AI绘画:动漫角色生成赛
AI绘画在动漫角色生成领域的应用现状生成对抗网络(GAN)、扩散模型(Diffusion Model)等核心技术的简介赛事目标:推动高质量、风格化动漫角色的算法创新。
2025-09-06 14:24:39
226
原创 AI绘画:动漫角色生成赛
AI绘画在动漫角色生成领域的应用现状生成对抗网络(GAN)、扩散模型(Diffusion Model)等核心技术的简介赛事目标:推动高质量、风格化动漫角色的算法创新。
2025-09-05 17:13:29
312
原创 Bug排查日记:从崩溃到修复的实战记录
技术收获:工具使用技巧、调试方法论(如二分法)流程改进:如何预防同类问题(代码审查、监控告警阈值优化)认知提升:对技术原理的新理解(如JVM内存模型)
2025-09-05 17:11:42
268
原创 2025年校招/社招【大模型(LLM)】面试“八股文”
预训练(Pre-training):在海量无标注文本上进行自回归(Autoregressive, AR, 如GPT) 或自编码(Autoencoding, AE, 如BERT) 学习。解决方案:Flash Attention(显存)、Ring Attention(处理极长序列,如百万token)、更好的位置编码(如YaRN)。估算一个7B模型在BF16下,序列长度为2048时的显存占用。优势:在极大增加参数量(如万亿)的同时,保持计算量(FLOPs)和推理速度与稠密模型相近(如Mixtral 8x7B)。
2025-09-04 10:26:46
565
原创 AI绘画:动漫角色生成赛
介绍AI绘画在动漫角色生成领域的应用背景,包括生成对抗网络(GAN)、扩散模型(Diffusion Model)等技术原理。概述赛事目标,如推动AI创作边界、探索艺术与技术的结合点。
2025-09-03 10:24:55
391
原创 CSDN博客:Bug排查日记
归纳从该Bug中学到的教训,提出代码规范、测试覆盖或监控告警的改进建议。列出未来避免类似问题的具体措施,如增加日志埋点或文档审查。
2025-09-03 10:23:09
224
原创 大模型 + 垂直场景:搜索 / 推荐 / 营销 / 客服领域开发有哪些新玩法?
利用大模型的生成能力,提供动态摘要、多轮问答式搜索体验,减少用户点击跳转。探索跨模态搜索,如图文、音视频混合检索,提升搜索结果的丰富性。借助大模型的用户行为分析和内容理解能力,构建更细粒度的用户画像和兴趣图谱。基于大模型的语义理解能力,实现更精准的意图识别和上下文感知搜索。部署大模型驱动的智能客服,支持多轮对话和复杂问题处理,减少人工干预。通过持续学习和用户反馈优化搜索排序,实现个性化结果推荐,避免传统关键词匹配的局限性。结合因果推理减少推荐偏差,解决信息茧房问题,提升系统的公平性和可解释性。
2025-08-31 19:01:03
277
原创 AI IDE+AI 辅助编程,真能让程序员 “告别 996” 吗?
AI IDE:集成AI功能的开发环境(如GitHub Copilot、Amazon CodeWhisperer、Tabnine等)AI辅助编程:代码生成、补全、错误检测、自动化测试等功能当前主流工具的功能对比与市场接受度。
2025-08-31 19:00:26
218
原创 GitHub宕机自救指南
多平台镜像(GitLab、Bitbucket、自建Gitea)Git附加工具链(git-remote-gcrypt加密备份)本地Runner配置示例(GitHub Actions)分布式系统故障(如数据库、缓存层问题)时间线重建方法(结合本地git记录)第三方服务依赖故障(云服务商问题)影响范围记录表(项目、团队、业务)改进措施跟踪表(预防-检测-恢复)网络攻击(DDoS、DNS劫持)本地定期备份关键仓库(脚本示例)SSH协议替代HTTPS克隆。Jenkins备用流水线模板。Git镜像仓库配置指南(
2025-08-29 11:25:32
233
原创 虚拟机逃逸攻防演练
定义与背景:解释虚拟机逃逸的概念及其在云计算与虚拟化安全中的重要性。攻击影响:列举成功逃逸可能导致的数据泄露、宿主系统控制权丧失等后果。典型场景:分析云服务、沙箱环境及多租户架构下的逃逸风险。
2025-08-29 11:21:52
289
原创 关于虚拟机逃逸攻防演练
定义与背景:解释虚拟机逃逸的概念及其在云计算和虚拟化环境中的重要性。攻击影响:分析虚拟机逃逸成功后的潜在危害,如宿主机和相邻虚拟机的数据泄露、权限提升等。典型场景:列举常见的虚拟化平台(如VMware、KVM、Hyper-V)及其逃逸攻击案例。
2025-08-28 14:59:50
252
原创 Libvio访问异常排查指南
通过第三方工具(如DownDetector)确认Libvio服务是否全局异常。分析服务端错误日志(如Nginx/Apache的error.log)确认是否因地区限制(如Geo-Blocking)导致异常。收集客户端控制台日志(浏览器F12的Network面板)测试不同网络环境(如移动数据/Wi-Fi)下的访问情况。验证是否存在DDoS防护或WAF规则误拦截。排查防火墙或企业网络策略是否屏蔽目标域名。排查代理或VPN配置是否干扰访问。验证DNS解析是否准确,通过。验证CDN或负载均衡是否生效。
2025-08-28 14:59:14
181
原创 JavaScript性能优化实战
CSS选择器保持简洁,避免强制同步布局(layout thrashing)。减少DOM操作次数,合并多次操作为单次批量操作。使用文档片段(DocumentFragment)或requestAnimationFrame优化渲染性能。采用节流(throttle)和防抖(debounce)技术控制高频事件触发频率。Web Worker处理CPU密集型任务,避免阻塞主线程。采用代码分割(code splitting)实现按需加载,减少初始加载时间。及时清除不再使用的变量引用,避免内存泄漏。
2025-08-27 11:43:15
342
原创 为什么网络安全和大模型是最新的风口?
为什么它们是并驾齐驱的最新风口?网络安全是数字世界的“盾”,需求因数字化深化而爆发,是保底的刚需。大模型是颠覆现实的“矛”,能力因技术突破而涌现,是增长的引擎。两者结合:矛(大模型)让盾(网络安全)变得更智能、更强大;同时,盾(网络安全)也必须进化,来保护这把新的、强大的矛(大模型)本身不被滥用。因此,无论是投资还是择业,这两个领域及其交叉地带,都充满了巨大的机遇,是当前时代确定性最高的技术发展趋势。想学更多尽在搜索:【艾登学长】
2025-08-26 11:01:44
318
原创 如何导出Wallpaper Engine的壁纸
本文介绍如何从Wallpaper Engine中提取壁纸原图。首先在软件中选择壁纸并复制scene.pkg文件,然后下载RePKG工具。将工具与pkg文件放在同一目录,通过命令行执行"RePKG.exe extract scene.pkg"指令即可解压资源,壁纸原图会保存在/output文件夹中。教程简单易操作,适合需要保存高清壁纸的用户。(98字)
2025-08-25 17:57:08
284
原创 Java转大模型指南
学习LoRA、Adapter等参数高效微调方法,这些技术可以降低计算资源需求。了解模型量化、剪枝等优化技术。学习使用ONNX、TensorRT等工具进行模型部署,这对Java开发者原有的系统集成经验很有帮助。学习监督学习、无监督学习、神经网络等基础概念。掌握线性代数、概率论和微积分等数学知识,这些是理解大模型工作原理的基础。根据现有Java经验,可以考虑模型部署、系统集成等方向。在GitHub上展示个人项目,如微调模型、应用开发等。学习词嵌入、序列建模等基础技术,逐步深入理解语言模型的工作原理。
2025-08-25 10:21:53
317
原创 2025最新最全大模型八股文整理
注:具体实现需结合最新论文和开源代码(如HuggingFace库),建议通过实践项目加深理解。技术演进迅速,需定期跟踪arXiv最新研究成果。想要八股文的话v搜【艾登学长】
2025-08-25 10:17:17
1960
原创 AI的出现,是否能替代IT从业者?
探讨 AI 的发展现状及其在 IT 领域的应用范围,分析 AI 当前的技术边界(如自动化测试、代码生成、运维监控等)。提出技能升级建议(如 AI 工具链掌握、业务理解能力),讨论人机协作的新工作模式(如 AI 辅助开发、模型调优)。列举可能被 AI 替代的重复性任务(如初级编码、数据清洗、日志分析),对比传统人工与 AI 的效率差异。强调需要人类判断的领域(如架构设计、复杂问题解决、伦理决策),分析创造力、跨领域协作等 AI 的短板。想学更多技术,尽在搜索【艾登学长】
2025-08-24 09:20:12
333
原创 2025最新最全【大模型八股文】零基础入门到精通,看完这一篇就够了!
掌握大模型相关的“八股文”是通过技术面试的关键一环。下面我为你整理了一个从基础到进阶的学习顺序和知识框架,并附上了一些经典面试题目,希望能帮助你系统准备。建议你在理解上述知识的同时,多动手实践,比如复现一些经典算法、阅读框架源码、参与开源项目或构建自己的个人项目。“八股文”虽重要,但切忌死记硬背。面试官更看重的是你是否真正理解概念背后的。希望这份梳理对你的学习有所帮助。祝你学习顺利,面试成功!技术面试不仅仅是背诵“八股文”,
2025-08-24 09:18:00
417
原创 Chrome插件开发实战
什么是Chrome插件Chrome插件的主要功能和用途Chrome插件的核心组件(manifest.json、background scripts、content scripts等)开发心得总结推荐学习资源(官方文档、社区、工具等)未来发展趋势。
2025-08-22 09:45:59
241
原创 大模型论文架构
大模型指参数量超过亿级的深度学习模型(如GPT-3、PaLM),基于Transformer架构,通过海量数据训练实现多任务泛化能力。
2025-08-22 09:39:56
390
原创 当GitHub宕机时,我们如何协作?
强调去中心化协作的重要性提供快速恢复的检查清单(注:可根据实际需求调整各模块深度,技术细节可补充代码片段或架构图)
2025-08-19 17:17:46
402
原创 2025最新最全【大模型教程】零基础入门到精通,看完这一篇就够了!
大模型(Large Language Models, LLMs)指参数规模超过百亿、甚至千亿的深度学习模型,如GPT-3、PaLM等。其核心是基于Transformer架构,通过海量数据训练获得文本生成、推理等能力。使用任务指令(如“翻译以下句子”)和示例数据微调模型,提升其遵循指令的能力。常用数据集包括FLAN、Self-Instruct等。训练数据中的社会偏见可能导致模型输出歧视性内容,需通过数据平衡、后处理等方法缓解。(注:以上为精简框架,实际万字教程需展开各章节细节并补充案例。
2025-08-18 14:26:09
1801
原创 coze工作流教程
常见节点类型包括数据输入、条件判断、API调用、数据处理、通知触发等。通过拖拽方式建立节点间的逻辑关系,设置分支条件和循环结构。使用连线工具定义执行路径,确保符合业务逻辑顺序。分析业务场景,确定工作流需要解决的问题或实现的自动化目标。全局变量适用于跨节点共享数据,局部变量限定在特定节点内生效。针对耗时任务考虑异步执行设计,设置合理的超时阈值。建立节点间的数据传递机制,通过变量绑定的方式实现参数共享。为关键节点配置异常捕获逻辑,设置重试策略或备用执行路径。设置阈值告警触发条件,建立异常响应流程。
2025-08-14 08:57:11
382
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人