自然图像的流形
- 线性降维:3D->2D, 与一维情况类似,将数据拟合到平面,并转换坐标系,使平面成为 x-y 平面 平面拟合(“Plane fitting”) 只需要为每个点(和平面参数)存储两个数字 更一般地说:寻找最适合数据的 2D 子空间,并忽略其余维度
- 主成分分析:根据数据沿每个轴的变化程度来查找正交轴并对其进行排序。
- 自编码器:编码器(Encoder):将非线性(深度网络)变换为低维空间 解码器(Decoder) :低维空间到原始内容的转换 损失函数约束输入和输出之间的差异 无监督-无需标签 自动编码器试图学习某个流形上的可逆变换
- 所有图像空间:大多数图像都是“噪点” “有意义”的图像倾向于在所有图像的空间内形成一些流形 特定类的图像落在该流形内的流形上
- 零空间:自动编码器试图针对某些流形上的数据实现可逆的降维,同时使得大多数噪声位于图像空间的不可逆部分(流形外)
图生图方法
- 图像预测
- 损失函数:选择位于流形上的图像
图像结合方法
- GANs(Generative Adversarial Networks)
- 生成器网络的结构与自编码器的解码器相似
- 以对抗性的方式训练对抗鉴别器网络
- Conditional GANs
- 从条件分布生成样本
- 生成器G 试图合成假图像来欺骗鉴别器D
- 鉴别器D 试图辨别其中假的图片
- 生成器G 试图合成假图像来欺骗鉴别器D: a r g max E x , y [ log D ( G ( x ) ) + log ( 1 − D ( y ) ) ] arg \max E _ { x , y } \left[ \log D ( G ( x ) ) + \log ( 1 - D ( y ) ) \right] argmaxE<