深度学习基础
- 深度学习概念:深度学习是机器学习的一个分支,它基于一系列算法,试图通过使用多个处理层建立数据的高级抽象模型,这些处理层具有复杂的结构,或者由多个非线性转换组成。–维基百科
- 深度学习发展历史:
模型名称 | 提出者 | 年份 |
---|---|---|
Perception | Rosenblatt | 1958 |
RNN | Grossberg | 1973 |
CNN | Fukushima | 1979 |
RBM | Hinton | 1999 |
DBN | Hinton | 2006 |
D-AE | Vincent | 2008 |
AlexNet | Alex | 2012 |
GoogLeNet | Szegedy | 2015 |
- 深度学习的应用:场景识别、视觉类型识别、目标检测、图像题注、语义分割、图像风格迁移、Deep Dream
- 深度学习平台:PyTorch TensorFlow Caffe MatConvNet Theano
- 不同平台的对比:
对比项 | Pytorch | Tensorflow |
---|---|---|
实现方式 | 命令式编程 | 符号式编程 |
图的定义 | 动态定义 | 静态定义 |
运行效率 | 效率相对低 | 效率高 |
学习成本 | 低 | 相对高 |
- 深度学习基本理论
- 学习表示
- 深度学习的步骤:网络构建(一组函数) → \rightarrow →学习目标(定义每一函数的好坏) → \rightarrow →学习过程(选择最好的函数f)
- 网络构建
- 神经网络:神经元、权重、偏置、激活函数
- 计算:矩阵形式
- 学习目标:
- 训练数据
- 代价函数(最小),常用代价函数有suare loss Hinge loss Logistic loss Cross entropy loss等
- 总体代价
- 学习过程
- 梯度下降法,会面临局部极小值点
深度学习技巧
- 学习阶段:网络构建-学习目标-学习过程
- 测试阶段:训练评价、模型推断、推断评价
- 学习过程
- 学习率调整策略:后向传播 SGD Mini-Batch SGD 新的激活函数 自适应学习率 Momentum,半监督学习方法 非监督学习方法
- 前向传播: z l = W l x + b l a l = σ ( z l ) z l = W l a l − 1 + b l a l = σ ( z l ) z ^ { l } = W ^ { l } x + b ^ { l} a ^ { l} = \sigma ( z ^ { l } ) \\ z ^ { l } = W ^ { l } a ^ { l - 1 } + b ^ { l} a ^ { l } = \sigma ( z ^ { l } ) z