图像分析学习笔记(4):机器学习图像特征与描述

图像分析学习笔记(4):机器学习图像特征与描述

深度学习基础

  • 深度学习概念:深度学习是机器学习的一个分支,它基于一系列算法,试图通过使用多个处理层建立数据的高级抽象模型,这些处理层具有复杂的结构,或者由多个非线性转换组成。–维基百科
  • 深度学习发展历史:
模型名称 提出者 年份
Perception Rosenblatt 1958
RNN Grossberg 1973
CNN Fukushima 1979
RBM Hinton 1999
DBN Hinton 2006
D-AE Vincent 2008
AlexNet Alex 2012
GoogLeNet Szegedy 2015
  • 深度学习的应用:场景识别、视觉类型识别、目标检测、图像题注、语义分割、图像风格迁移、Deep Dream
  • 深度学习平台:PyTorch TensorFlow Caffe MatConvNet Theano
  • 不同平台的对比:
对比项 Pytorch Tensorflow
实现方式 命令式编程 符号式编程
图的定义 动态定义 静态定义
运行效率 效率相对低 效率高
学习成本 相对高
  • 深度学习基本理论
  • 学习表示
  • 深度学习的步骤:网络构建(一组函数) → \rightarrow 学习目标(定义每一函数的好坏) → \rightarrow 学习过程(选择最好的函数f)
  • 网络构建
    • 神经网络:神经元、权重、偏置、激活函数
    • 计算:矩阵形式
  • 学习目标:
    • 训练数据
    • 代价函数(最小),常用代价函数有suare loss Hinge loss Logistic loss Cross entropy loss等
    • 总体代价
  • 学习过程
    • 梯度下降法,会面临局部极小值点

深度学习技巧

  • 学习阶段:网络构建-学习目标-学习过程
  • 测试阶段:训练评价、模型推断、推断评价
  • 学习过程
    • 学习率调整策略:后向传播 SGD Mini-Batch SGD 新的激活函数 自适应学习率 Momentum,半监督学习方法 非监督学习方法
    • 前向传播: z l = W l x + b l a l = σ ( z l ) z l = W l a l − 1 + b l a l = σ ( z l ) z ^ { l } = W ^ { l } x + b ^ { l} a ^ { l} = \sigma ( z ^ { l } ) \\ z ^ { l } = W ^ { l } a ^ { l - 1 } + b ^ { l} a ^ { l } = \sigma ( z ^ { l } ) z
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值