图像分析学习笔记(3):人工设计图像特征

图像分析学习笔记(3):人工设计图像特征

概述

  • 图像的特征:通过对研究对象固有的、本质的及重要的特征或属性进行量测并将结果数值化,或将对象分解并符号化,形成的特征矢量或符号串、关系图。
  • 目的:寻找样本的本质属性,使得样本便于区分
  • 人工设计特征vs机器学习特征:
    • 人工设计特征的优缺点
    • 优点:可解释性强,特征的含义和设计逻辑清晰,便于理解和调试。 设计灵活,可以根据具体问题和领域知识定制特征,适应不同场景的需求。
    • 缺点:需要设计者根据数据的特点精心设计,成本较高,耗时耗力。 依赖设计者的经验,具有一定的主观性,可能导致特征质量参差不齐。 对数据的泛化性不强,设计特征可能仅适用于特定数据集,难以迁移到其他任务。
    • 机器学习特征的优缺点:
    • 优点:通过挖掘大数据得到特征,能够自动提取数据中的潜在模式和规律。 对特定数据集的泛化性强,能够更好地适应数据分布,提高模型性能。
    • 缺点:依赖大数据,需要足够的数据量才能训练出有效的特征表示。 可解释性差,模型生成的特征可能难以理解,影响决策的透明性和可信度。
  • 人工设计特征:
    • 一、线特征 边缘提取、Hough变换、 相位编组
    • 二、点特征 Susan、Harris、Sift
    • 三、形状特征 Hu不变矩、 、Radon变换
    • 四、纹理特征 灰度共现阵、 局部二元模式、HOG特征

线特征

  • 线特征:目标轮廓、边界,一般发生在图像特性有意义变化的位置
  • 线特征提取基本步骤:边缘检测(抽取反应灰度变化的基本单元–边缘点);边缘编组:将边缘连接或编组为有意义的线类型特征
  • 边缘检测:边缘与导数有密切关系,一般而言,一阶
    导数的极值点对应着边界,二阶导数的过零点对应着边界。梯度包含两个方向的导数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值