概述
- 图像的特征:通过对研究对象固有的、本质的及重要的特征或属性进行量测并将结果数值化,或将对象分解并符号化,形成的特征矢量或符号串、关系图。
- 目的:寻找样本的本质属性,使得样本便于区分
- 人工设计特征vs机器学习特征:
- 人工设计特征的优缺点
- 优点:可解释性强,特征的含义和设计逻辑清晰,便于理解和调试。 设计灵活,可以根据具体问题和领域知识定制特征,适应不同场景的需求。
- 缺点:需要设计者根据数据的特点精心设计,成本较高,耗时耗力。 依赖设计者的经验,具有一定的主观性,可能导致特征质量参差不齐。 对数据的泛化性不强,设计特征可能仅适用于特定数据集,难以迁移到其他任务。
- 机器学习特征的优缺点:
- 优点:通过挖掘大数据得到特征,能够自动提取数据中的潜在模式和规律。 对特定数据集的泛化性强,能够更好地适应数据分布,提高模型性能。
- 缺点:依赖大数据,需要足够的数据量才能训练出有效的特征表示。 可解释性差,模型生成的特征可能难以理解,影响决策的透明性和可信度。
- 人工设计特征:
- 一、线特征 边缘提取、Hough变换、 相位编组
- 二、点特征 Susan、Harris、Sift
- 三、形状特征 Hu不变矩、 、Radon变换
- 四、纹理特征 灰度共现阵、 局部二元模式、HOG特征
线特征
- 线特征:目标轮廓、边界,一般发生在图像特性有意义变化的位置
- 线特征提取基本步骤:边缘检测(抽取反应灰度变化的基本单元–边缘点);边缘编组:将边缘连接或编组为有意义的线类型特征
- 边缘检测:边缘与导数有密切关系,一般而言,一阶
导数的极值点对应着边界,二阶导数的过零点对应着边界。梯度包含两个方向的导数