模式识别与机器学习课程笔记(1):绪论

课程介绍

  • ⑴课程适应于EECS背景的研究生,应具有以下先修
    知识
    ①线性代数(Linear algebra)
    ②概率与数理统计Probability theory, statistics
    ③数据结构(Data structures)
    ④编程语言 MATLAB or C/C++ or Python
    ⑵本课程不需要事先具备:
    ①imaging experience, image processing
    ②computer vision, or graphics
  • 参考教材:
    (1)孙即祥,《模式识别与机器学习(第二版)》,高等教育出版社,2008.
    (2)Christopher M Bishop. Pattern Classification and Machine Learning[M]. Springer. 2006.
    (3)Ian Goodfellow,Yoshua Bengio,Aaron Courville. Deep Learning[M]. The MIT Press. 2016.
    (4)Richard O. Duda, Peter E. Hart, David G. Stock. Pattern Classification[M], Second Edition. Wiley-Interscience Publication. 2001.
  • 出版物:
    ⑴ Journals
    ① IEEE Transaction on Pattern Analysis and Machine Intelligence (TPAMI)
    ② Pattern Recognition Journal (PRJ)
    ③ Pattern Recognition Letters (PRL)
    ④ Pattern Analysis and Application (PAA)
    ⑤ International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI)
    ⑥ Machine Learning Journal (MLJ)
    ⑦ Journal of Machine Learning Research (JMLR)
    ⑧ IEEE Transaction on Knowledge and Data ngineering (TKDE)
    ⑵ Conferences
    ① IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
    ② International Conference on Pattern Recognition (ICPR)
    ③ NIPS,ICML,IJCAI,ICCV、ECCV、BMCV,ICLR
  • 课程主要内容:
    第一章 绪论
    第二章 贝叶斯决策论
    第三章 统计决策中的经典学习方法
    第四章 线性判决函数
    第五章 核方法
    第六章 神经网络
    第七章 聚类分析
    第八章 特征提取与选择
    第九章 决策树
    第十章 采样方法
    第十一章 深度学习
    第十二章 生成对抗网
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值