模式识别与机器学习课程笔记(1):绪论
课程介绍
- ⑴课程适应于EECS背景的研究生,应具有以下先修
知识
①线性代数(Linear algebra)
②概率与数理统计Probability theory, statistics
③数据结构(Data structures)
④编程语言 MATLAB or C/C++ or Python
⑵本课程不需要事先具备:
①imaging experience, image processing
②computer vision, or graphics - 参考教材:
(1)孙即祥,《模式识别与机器学习(第二版)》,高等教育出版社,2008.
(2)Christopher M Bishop. Pattern Classification and Machine Learning[M]. Springer. 2006.
(3)Ian Goodfellow,Yoshua Bengio,Aaron Courville. Deep Learning[M]. The MIT Press. 2016.
(4)Richard O. Duda, Peter E. Hart, David G. Stock. Pattern Classification[M], Second Edition. Wiley-Interscience Publication. 2001. - 出版物:
⑴ Journals
① IEEE Transaction on Pattern Analysis and Machine Intelligence (TPAMI)
② Pattern Recognition Journal (PRJ)
③ Pattern Recognition Letters (PRL)
④ Pattern Analysis and Application (PAA)
⑤ International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI)
⑥ Machine Learning Journal (MLJ)
⑦ Journal of Machine Learning Research (JMLR)
⑧ IEEE Transaction on Knowledge and Data ngineering (TKDE)
⑵ Conferences
① IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
② International Conference on Pattern Recognition (ICPR)
③ NIPS,ICML,IJCAI,ICCV、ECCV、BMCV,ICLR - 课程主要内容:
第一章 绪论
第二章 贝叶斯决策论
第三章 统计决策中的经典学习方法
第四章 线性判决函数
第五章 核方法
第六章 神经网络
第七章 聚类分析
第八章 特征提取与选择
第九章 决策树
第十章 采样方法
第十一章 深度学习
第十二章 生成对抗网
第