搞清Δ,梯度, 方向导数,散度,拉普拉斯算子

本文旨在清晰阐述Δ, 梯度(∇), 方向导数, 散度及拉普拉斯算子等数学概念,这些在机器学习的优化和数值分析中扮演重要角色。通过引用相关资源,帮助读者深入理解这些概念及其在实际问题中的应用。" 98343018,8500036,React应用中集成百度地图API实战,"['前端开发', 'React', 'JavaScript', '地图API', 'H5 API']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

搞清Δ,∇,\Delta, \nabla,Δ,, 方向导数,散度,拉普拉斯算子

符号解释
Δ\DeltaΔ它体现在公式中ΔT,Δx,Δy\Delta T,\Delta x,\Delta yΔT,Δx,Δy 也就是说Δ\DeltaΔ代表的是一个变量的变化;还用于表示Laplace算子
∇\nabla它表示梯度(∂f∂x,∂f∂y,∂f∂z)(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})(xf,yf,zf)
方向导数顾名思义,就是指在任意方向上的变化率。特殊情况就是在坐标轴上的变化率,即偏导数任意l方向:(∂f∂l)p0=fl(p0)=fx(p0)cosα+fy(p0)cosβ+fz(p0)cosγ任意l方向:(\frac{\partial f}{\partial l})_{p_0}=f_l(p_0)=f_x(p_0)cos\alpha+f_y(p_0)cos\beta+f_z(p_0)cos\gammal(lf)p0=fl(p0)=fx(p0)cosα+fy(p0)cosβ+fz(p0)cosγ X方向:fx(p0)=fx(p0)X方向:f_x(p_0)=f_x(p_0)Xfx(p0)=fx(p0)
散度对于一个向量(对于任意的一个向量)A(x,y,z)=P(x,y,z)i→+Q(x,y,z)j→+R(x,y,z)k→A(x,y,z)=P(x,y,z)\overrightarrow{i}+Q(x,y,z)\overrightarrow{j}+R(x,y,z)\overrightarrow{k}A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k A(x,y,z)的散度为A(x,y,z)的散度为A(x,y,z)div(A→)=∂P∂x+∂Q∂y+∂R∂zdiv(\overrightarrow{A})=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}div(A)=xP+yQ+zR,是一个标量
Laplace算子可以解释为:div(∇f)div(\nabla f)div(f),其中∇f=(∂f∂x,∂f∂y,∂f∂z)\nabla f=(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})f=(xf,yf,zf) Δf=∂∂x∂f∂x+∂∂y∂f∂y+∂∂z∂f∂z=∂2f∂x2+∂2f∂y2+∂2f∂z2\Delta f=\frac{\partial}{\partial x}\frac{\partial f}{\partial x}+\frac{\partial}{\partial y}\frac{\partial f}{\partial y}+\frac{\partial}{\partial z}\frac{\partial f}{\partial z}\\=\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}+\frac{\partial^2f}{\partial z^2}Δf=xxf+yyf+zzf=x22f+y22f+z22f

若有错误,请多多指教

参考文献:
散度,旋度与拉普拉斯算子:https://zhuanlan.zhihu.com/p/53794607
华东师范大学,数学分析[M].高等教育出版社

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值