搞清Δ,∇,\Delta, \nabla,Δ,∇, 方向导数,散度,拉普拉斯算子
符号 | 解释 |
---|---|
Δ\DeltaΔ | 它体现在公式中ΔT,Δx,Δy\Delta T,\Delta x,\Delta yΔT,Δx,Δy 也就是说Δ\DeltaΔ代表的是一个变量的变化;还用于表示Laplace算子 |
∇\nabla∇ | 它表示梯度(∂f∂x,∂f∂y,∂f∂z)(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})(∂x∂f,∂y∂f,∂z∂f) |
方向导数 | 顾名思义,就是指在任意方向上的变化率。特殊情况就是在坐标轴上的变化率,即偏导数任意l方向:(∂f∂l)p0=fl(p0)=fx(p0)cosα+fy(p0)cosβ+fz(p0)cosγ任意l方向:(\frac{\partial f}{\partial l})_{p_0}=f_l(p_0)=f_x(p_0)cos\alpha+f_y(p_0)cos\beta+f_z(p_0)cos\gamma任意l方向:(∂l∂f)p0=fl(p0)=fx(p0)cosα+fy(p0)cosβ+fz(p0)cosγ X方向:fx(p0)=fx(p0)X方向:f_x(p_0)=f_x(p_0)X方向:fx(p0)=fx(p0) |
散度 | 对于一个向量(对于任意的一个向量)A(x,y,z)=P(x,y,z)i→+Q(x,y,z)j→+R(x,y,z)k→A(x,y,z)=P(x,y,z)\overrightarrow{i}+Q(x,y,z)\overrightarrow{j}+R(x,y,z)\overrightarrow{k}A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k A(x,y,z)的散度为A(x,y,z)的散度为A(x,y,z)的散度为div(A→)=∂P∂x+∂Q∂y+∂R∂zdiv(\overrightarrow{A})=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}div(A)=∂x∂P+∂y∂Q+∂z∂R,是一个标量 |
Laplace算子 | 可以解释为:div(∇f)div(\nabla f)div(∇f),其中∇f=(∂f∂x,∂f∂y,∂f∂z)\nabla f=(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})∇f=(∂x∂f,∂y∂f,∂z∂f) Δf=∂∂x∂f∂x+∂∂y∂f∂y+∂∂z∂f∂z=∂2f∂x2+∂2f∂y2+∂2f∂z2\Delta f=\frac{\partial}{\partial x}\frac{\partial f}{\partial x}+\frac{\partial}{\partial y}\frac{\partial f}{\partial y}+\frac{\partial}{\partial z}\frac{\partial f}{\partial z}\\=\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}+\frac{\partial^2f}{\partial z^2}Δf=∂x∂∂x∂f+∂y∂∂y∂f+∂z∂∂z∂f=∂x2∂2f+∂y2∂2f+∂z2∂2f |
若有错误,请多多指教
参考文献:
散度,旋度与拉普拉斯算子:https://zhuanlan.zhihu.com/p/53794607
华东师范大学,数学分析[M].高等教育出版社