介绍
Ollama 是一个开源免费的本地化大型语言模型(LLM)管理工具,旨在简化大模型在个人设备上的部署、运行和管理。它支持跨平台操作(Windows、macOS、Linux),提供命令行和API接口,适合开发者、研究人员及爱好者快速体验和集成大模型能力。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
02核心特点
1本地化运行
所有模型和数据均在本地运行,无需依赖云端服务,保障数据隐私,适合敏感场景(如企业内部或科研)。
2多模型支持
预集成主流开源模型(如Llama3、DeepSeek-R1、Qwen3、Gemma3等),覆盖文本生成、代码开发、多语言翻译等任务,支持超过50种模型。
3轻量化设计
通过量化技术(如4-bit/8-bit)降低显存占用,普通设备(如 deepseek-r1:1.5B 量化后仅需约 1GB 显存)即可运行轻量模型。
4易用性
提供简单的命令行工具和兼容OpenAI的RESTAPI(默认端口11434),支持流式对话和批量处理。
03
安装与部署
下载地址:https://ollama.com/download
linux安装:
下载安装包和脚本,直接运行install.sh即可进行本地离线安装。
## systemctl status ollama #查看服务状态
## systemctl start ollama #启动服务
## systemctl stop ollama #停止服务
window安装:
下载安装包(OllamaSetup.exe)双击运行安装;
进入设置自定义模型存放路径。
04必看
功能使用
模型广场:https://ollama.com/search
1模型管理
下载模型:ollama pull <模型名>
删除模型:ollama rm <模型名>
列出模型:ollama list 查看已安装模型
2交互式对话
通过运行模型:ollama run <模型名> 将自动下载模型并启动交互式会话,支持多轮对话
3API集成
提供RESTful API,可无缝对接LangChain等开发框架,示例:
import requests
url = "http://<ollama服务器地址>:11434/api/chat"
data = {
"model": "deepseek-r1:70b",
"messages": [{"role": "user", "content": "Python如何实现多线程?"}],
"stream": False
}
response = requests.post(url, json=data).json()
print(response['message']['content'])
4工具集成
可使用Cherry Studio工具构建本地AI助手或知识库系统。
下载地址:https://www.cherry-ai.com
读者福利:倘若大家对大模型感兴趣,那么这套大模型学习资料一定对你有用
针对0基础小白:
如果你是零基础小白,快速入门大模型是可行的。
大模型学习流程较短,学习内容全面,需要理论与实践结合
学习计划和方向能根据资料进行归纳总结
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
这里我们能提供零基础学习书籍和视频。作为最快捷也是最有效的方式之一,跟着老师的思路,由浅入深,从理论到实操,其实大模型并不难。
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓