手把手教你从 0 到 1 搭建 agent,小白也能看懂的框架指南

前言

近一年agent不断火热,或是大模型借助工具自助决策完成任务,或是通过静态编排的工作流自动顺序执行结果,让我们在处理相关任务时效率得到指数级提高。

尽管可以在很多智能体商店找到一些场景下的agent项目,但为了能够个性化满足自己的需求,最好还是可以自己了解、尝试搭建一些基础agent。

 前排提示,文末有大模型AGI-CSDN独家资料包哦!

1.png

本篇就以扣子平台为例,给大家做个agent的入门介绍(其实各平台比如dify、n8n业务逻辑都大差不差,选择扣子是因为国内平台,好理解些);

按学习新事物的惯例逻辑,主要会从agent的整体框架、组成部分逻辑角度进行展开,主要是回答为什么;对于怎么搭建,后面会专门写一些实战案例,也可以后续关注。

应用场景

先说下搭建的agent怎么用?拿扣子来说,很多人还是觉得在扣子搭建的智能体,只能在扣子商店或者字节系平台(扣子是字节推出的智能体开发平台)如豆包、飞书使用。

其实不然,agent在发布时是可以直接生成api和sdk的,这样想象空间就大了,有2个我们接触最多的场景,一是可以直接内嵌到微信公众号或微信客服消息中,通过公众号或微信好友的交互形式进行使用,非常贴合我们的使用习惯;

第二种就是直接对接到app中,通过调用api使其成为app的一个板块或功能,尤其是支持多模态的agent,音视频交互,在app里是不是想象力大增!

agent从搭建到使用主要由3个核心环节:业务逻辑编排(包括人设提示词)——调试预览——发布使用,在发布使用这个环节就可以生成上述说的对接其他平台的一些请求样式。

2.png

3.png

业务逻辑编排

知道应用场景后,就回到了核心怎么搭的问题,要了解怎么搭,最基础的肯定还是要了解agent编排的几个核心元素,在agent搭建中,有个常见公式即agent=llm(模型)+memory(含知识库、变量、数据库)+plugin(插件工具),最常用的其实也是这几个:

模型:

无疑是agent的核心和灵魂,如果说agent里有避不可少的一个元素,那就是模型了,像知识库、插件这些都是按需添加,但模型是必须的,哪怕只靠模型和提示词,也是可以做出一个简易bot,发布就能用。

在这个地方选择自己需要的模型进行添加,对应模型参数一般默认即可。

4.png

5.png

需要注意的是如果agnet里需要配置插件,那一定要选择带有function call或工具调用标记的模型,这个标记的意思是模型具有调用api、函数、工具来获取信息、执行操作或完成特定任务的能力。

6.png

插件:

这个比较容易理解,模型更像是一个大脑,但要解决问题,还是需要借用外部工具的能力,就像四肢一样,这些插件本质上就是由一个或多个api构成的,点击“+”号选择需要的插件即可。

7.png

知识库:

因为模型都是通过历史数据训练的,这些数据在训练时就已经固定。所以模型训练完后,其知识就停留在训练时的状态,无法自动获取训练之后的新信息。

这时候就需要给模型最新的知识获取入口,一种方法就是通过网络搜索插件,利用联网能力获取新内容,另一种就是知识库,把相关信息传递给模型。

另外在面对非公域信息时,如个人或公司内部私密的内容,这时候就只能用知识库了,哪怕是网络搜索之类的插件也无法解决这个问题。

在coze中用知识库也比较简单,点击+号先在知识库板块创建一个知识库,然后点击再在agent里添加即可;原理就是会对你提供的文档利用rag技术进行切片检索,信息重组,然后再通过模型生成相关信息给你,所以文档切片与召回策略配置对回答的效果匹配度就非常重要。

9.png

R:Retrieval(检索):从知识库中找到与用户问题相关的内容;

A:Augmented(增强):挑选出最相关的段落和信息,并把它们汇总整理;

G:Generation(生成):大模型将整合的信息生成一个自然流畅的回答。

8.png

知识库设置保持默认即可,有几个参数简单解释下:

查询改写:是指根据对话历史对用户输入的内容进行优化或重构,从而更准确地捕捉真实的用户意图,提升信息检索的效率。大白话就是回答时不局限用户问的当前问题,而是会考虑前面用户问的几个问题当作上下文背景信息来回答。

结果重排:是指根据相关性或质量对检索到的文档切片进行重新排序,以提高生成答案的准确性和相关性;未开启结果重排时,节点输出的是向量检索的结果,根据匹配度从大到小排序;开启结果重排后,系统会将召回结果交由 Rerank 模型进行质量和相关性判断,对结果重新排序,将与输入问题最相关的内容排在前面。

10.png

变量:

变量用来存储动态变化的信息,配置变量后,在用户与agent的交互过程中,系统会自动识别与变量匹配的内容,并将其存储至变量中,可以在工作流等节点的环节读取检索和使用这些变量。

打开启用变量开关且勾选操作列后,表示启用变量并可以在智能体的人设与提示词中使用变量。

仅打开启用变量开关,未勾选操作列时,表示仅支持在工作流、插件中使用该变量。

11.png

12.png

工作流:

这是agent处理复杂任务的核心板块,本质是通过一系列可视化的形式将不同节点进行拖拽,实现解决任务的逻辑,可以添加模型节点、代码节点、数据库节点等等。

13.png

14.png

做这个工作流的核心前提还是自己要对需求任务的解决步骤sop明晰,怎么拆分任务、每个子任务通过工作流自动化、然后将多个子任务进行串联;平时可以多看商店市场里的工作流是怎么做的,无他,多练。后面也会进行一些工作流案例拆解分析。

入手建议

对于新手小白,建议可以先从简易bot开始上手,只依靠模型和提示词,体验到高效率带来的快感;然后再往里添加插件、知识库等;再逐渐结合基础工作流,一步步往丰富工作流,最终做出多逻辑的复杂agent。

以上就是agent的一些核心元素环节的基础介绍;后面也会分享一些具体的agent和workflow 案例,有兴趣可以关注哦。

读者福利:倘若大家对大模型感兴趣,那么这套大模型学习资料一定对你有用

针对0基础小白:

如果你是零基础小白,快速入门大模型是可行的。
大模型学习流程较短,学习内容全面,需要理论与实践结合
学习计划和方向能根据资料进行归纳总结

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

请添加图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

这里我们能提供零基础学习书籍和视频。作为最快捷也是最有效的方式之一,跟着老师的思路,由浅入深,从理论到实操,其实大模型并不难

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 构建Agent的基础概念 构建Agent涉及多个方面,包括但不限于时间推理能力、工具集成以及系统架构设计。为了使Agent具备处理复杂任务的能力,其结构通常被划分成不同模块以便于管理和扩展[^1]。 对于想要开发自己的Agent系统的开发者来说,理解这些基础组件至关重要: - **工具定义**:在Agent框架内,工具是指那些可由Agent调用以执行特定功能的服务或函数。这种机制允许Agent利用外部资源解决超出单纯语言处理范围的问题[^2]。 - **系统架构概述**:一个典型的Agent体系可能包含至少两大部分——负责实际操作逻辑的`agent服务`和用于规划与控制流程的前端界面(`webui`)。前者支持多种类型的后台服务(例如大型语言模型),而后者则提供了直观的操作平台让用户能够轻松配置复杂的执行方案[^3]。 ### 实现简易版Agent实例 基于上述理论知识,下面给出一段简单的Python代码片段展示如何快速建立一个基本形态下的Agent原型。此例子主要展示了如何设置环境并加载必要的依赖项;之后会介绍怎样编写具体的业务逻辑和服务接口。 #### 准备工作 首先安装所需的库文件: ```bash pip install transformers requests flask ``` 接着初始化项目目录结构,并创建相应的入口脚本(main.py): ```python from flask import Flask, request, jsonify import os app = Flask(__name__) @app.route('/execute', methods=['POST']) def execute_plan(): data = request.json.get('plan') result = "Plan executed successfully." return jsonify({"status": "success", "message": result}) if __name__ == '__main__': app.run(debug=True) ``` 这段代码建立了最基本的Web服务器端点,它接收来自客户端提交的任务计划并通过模拟的方式返回成功响应消息。这只是一个非常初级的例子,在真实的应用场景中还需要加入更多细节如错误处理、日志记录等功能[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值