「安装」 Windows下安装Anaconda、CUDA、Pytorch、Jupyter使用

「安装」 Windows下安装Anaconda、CUDA、Pytorch、Jupyter使用

Linux

Linux下安装Anaconda:

bash (Anaconda下载的.sh文件路径)

如果Anaconda下载的.sh文件是在当前文件夹,直接用下面的命令即可:

bash Anaconda3-5.3.1-Linux-x86.sh

然后根据提示安装即可,安装过程中要注意的一点是添加到系统的环境变量那里,输入yes。
在这里插入图片描述
在这里插入图片描述

Mac

Mac安装Anaconda的方式同Linux一样。
在这里插入图片描述
下载.sh文件用bash命令;下载.pkg文件类似于Windows的.exe文件。

Windows

下面进行Windows下安装CUDA和Pytorch来跑深度学习。

安装CUDA

CUDA介绍:https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html

注意只有NVIDIA GPU才能使用CUDA,AMD GPU或集成显卡均无法使用CUDA。

首先查看电脑是否拥有NVIDIA GPU:
win + r 打开「运行」窗口,输入dxdiag
在这里插入图片描述
在这里插入图片描述

下载CUDA,进入官网 https://developer.nvidia.com/cuda-downloads
在这里插入图片描述

打开安装包:
在这里插入图片描述
设置安装目录:
在这里插入图片描述
安装选默认选项:
核心就是装:

  1. 驱动
  2. cuda开发环境

在这里插入图片描述

安装完成后进入命令行,使用nvidia-smi命令查看是否安装成功:
在这里插入图片描述

安装miniconda

接下来下载Python环境miniconda(为什么要装miniconda参考其他资料),进入官网 https://docs.anaconda.com/miniconda/miniconda-other-installer-links/#
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
默认选项安装即可:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

上图选项的意思:

  • Register Miniconda3 as my default Python 3.8:(conda是包含Python的),意思是miniconda作为默认的Python版本,PyCharm、VSCode等会默认使用miniconda的Python版本。
  • Add Miniconda3 to my PATH environment variable:添加miniconda到系统环境。勾选这个选项后,添加miniconda到系统环境,打开命令行输入python会进入到miniconda的Python。

安装好miniconda后如何打开miniconda自带的Python呢?
有两种方式:
方式一:如果在安装miniconda时勾选了Add Miniconda3 to my PATH environment variable(添加miniconda到系统环境),那么只需要打开命令行,输入python,这时就进入了miniconda自带的python。

方式二:如果没有勾选上面的选项,可以用下面这种方式。
miniconda自带了一个Anaconda Powershell Prompt的命令行,在开始菜单打开

### 如何在 Windows 系统中使用 Anaconda 安装 PyTorch #### 准备工作 确保已安装 Anaconda 并熟悉其基本操作。如果尚未安装 Anaconda,可以参考相关文档完成安装过程[^2]。 #### 切换镜像源 为了提高下载速度并增加成功率,在安装前建议切换至国内清华镜像源。具体方法如下: 1. 打开 **Anaconda Prompt**。 2. 输入以下命令逐行执行以设置镜像源: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes ``` #### 创建虚拟环境(可选) 推荐为 PyTorch 创建独立的虚拟环境以避免依赖冲突。可以通过以下命令创建名为 `pytorch_env` 的新环境(可根据需求更改名称): ```bash conda create -n pytorch_env python=3.9 ``` 激活该虚拟环境: ```bash conda activate pytorch_env ``` #### 安装 PyTorch 及其依赖项 访问 [PyTorch官网](https://pytorch.org/) 获取适合当前系统的安装命令。通常情况下,对于 CPU 版本的 Python 3.x 用户,可以直接运行以下命令: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 如果是 GPU 支持版本,则需根据硬件配置调整参数。例如,NVIDIA CUDA 11.7 的用户应改为: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch ``` 注意:上述命令中的 `-c pytorch` 表明从指定通道获取软件包[^4]。 #### 验证安装 完成安装后可通过测试验证是否正常运作。启动 Python 解释器并尝试导入模块: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) # 如果支持GPU则返回True;否则False ``` 无错误提示即表明安装成功。 #### 后续步骤 若计划利用 Jupyter Notebook 或其他交互工具开发项目,还需额外安装 `ipykernel` 插件以便于管理内核: ```bash conda install ipykernel ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值