【数据挖掘竞赛】——降低汽油精制过程中的辛烷值损失模型(一)

该博客介绍了通过数据挖掘技术解决化工过程建模问题,目标是建立预测汽油辛烷值损失的模型。文章讨论了数据预处理的步骤,包括缺失值处理、异常值检测和变量筛选,旨在降低催化裂化汽油精制过程中的辛烷值损失,提高经济效益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🤵‍♂️ 个人主页:@Lingxw_w的个人主页

✍🏻作者简介:计算机科学与技术研究生在读
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+  

目录

一、背景

二、目标

三、问题

四、数据预处理

4.1 先开始285数据的处理: 

4.2 附件313数据的处理:

 4.3附件一的处理:

 4.4 拉以达准则

 4.5 缺失值的处理


题目文件:

链接: https://pan.baidu.com/s/1nuLPVPcZ7Ess8HCpbtC75Q 提取码: t9s7 

一、背景

汽油是小型车辆的主要燃料,汽油燃烧产生的尾气排放对大气环境有重要影响。为此,世界各国

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lingxw_w

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值